

Barcelona Supercomputing Center – Centro Nacional de Supercomputación

Resolución Comité de Acceso,
Asignación de Horas de Supercomputación
para la
Red Española de Supercomputación (RES)
1er período 2021

Barcelona, Febrero 2021

Resolución Comité de Acceso, 1er período 2021

1. Introducción

El Comité de Acceso del Barcelona Supercomputing Center – Centro Nacional de Supercomputación es un órgano asesor del Director que informará las solicitudes de acceso al Centro de los investigadores y grupos de investigación que lo soliciten. El Comité propondrá al Director, en base a la calidad científica y técnica de las propuestas recibidas una lista razonada y priorizada de las solicitudes. Corresponde al Director la decisión sobre los accesos autorizados.

El acceso es para las máquinas de la Red Española de Supercomputación (RES), e incluye MareNostrum. La asignación entre las diferentes máquinas se hace con motivos de necesidad de las actividades y de eficiencia.

El protocolo de acceso aprobado por la Comisión Ejecutiva del BSC está publicado en la página de web del BSC,http://www.bsc.es/RES

2. Análisis

La RES ha asignado este período 194,9 millones de horas, que se obtienen sumando todas las horas de las diferentes arquitecturas, incluyendo las horas de prioridad A y prioridad B. Estas horas incluyen las máquinas instaladas en Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC), Instituto Astrofísico de Canarias (IAC), Universidad de Cantabria (UC), Universidad de Málaga (UMA), Universidad de Valencia (UV), Universidad de Zaragoza (UZ), Consorci de Serveis Universitaris de Catalunya (CSUC), CénitS-COMPUTAEX (CENITS), Fundación del Centro de Supercomputación de Castilla y León (SCAYLE), Universidad Autónoma de Madrid (UAM), Navarra de Servicios Y Tecnologías(NASERTIC) y Fundación Pública Galega Centro Tecnolóxico de Supercomputación de Galicia (CESGA).

Todas las actividades han sido evaluadas por los paneles de expertos, clasificando las solicitudes según si eran excelentes, muy buenas y buenas. Adicionalmente, se han tomado en consideración los criterios de evaluación descritos en la SecciónComentarios sobre la evaluación.

Con las actividades excelentes de mayor prioridad, se cubre el uso teórico de las máquinas de la RES para el próximo período de 4 meses. Algunas actividades calificadas como excelentes no han podido recibir recursos por la gran cantidad de demanda recibida, y sólo han podido recibir horas sin prioridad.

A la mayoría de actividades que han obtenido recursos, se han asignado horas de uso de las máquinas de la RES con utilización preferente. El resto de actividades que han obtenido recursos, es con utilización no preferente (es decir, utilizando las horas cuando estas no sean usadas por las actividades preferentes, con lo que no se puede garantizar que puedan usar las horas asignadas).

Las actividades que no reciben horas de utilización al sistema no podrán disponer de acceso al mismo. Todas estas actividades recibirán un e-mail indicando que no ha sido posible concederles acceso a las máquinas en esta oportunidad. Se anima a todos los solicitantes a presentar solicitud de acceso para la siguiente convocatoria, que iniciará la evaluación el próximo mes de Mayo de 2021.

Para mejorar como se comparten los recursos asignados entre las diferentes actividades, y evitar así las concentraciones de uso de máquinas en determinados periodos de tiempos, se requiere la utilización proporcional de los recursos asignados. Así, si una actividad no utiliza la parte proporcional asignada en un periodo determinado, quedará reducida la asignación total de forma proporcional. Por ejemplo, si de una asignación de 400 mil horas en cuatro meses, no utiliza cerca de 100 mil horas el primer mes, su asignación para el periodo completo será reducida a 300 mil. De la misma forma, se reducirá la prioridad de acceso a las actividades que sobrepasen su asignación proporcional en cada periodo de tiempo. Por ejemplo, si de una asignación de 400 mil horas en cuatro meses, se utiliza cerca de 200 mil horas el primer mes, se irá reduciendo la prioridad de los diferentes trabajos en el sistema para que la prioridad regularice el consumo.

Así mismo, las horas no consumidas en el período no se pueden acumular para próximas convocatorias.

La utilización se medirá según "ellapsed time", considerando la utilización por el número de procesadores asignados. Por ejemplo, si se debe asignar el uso en exclusiva de un nodo (que tiene varios procesadores, dependiendo de la máquina) durante 1 hora, se considerará el uso de 48, 24,16, 8, 4 o 2 horas, dependiendo de la máquina.

3. Comentarios sobre la evaluación

El Comité de Acceso del BSC-CNS ha seguido los siguientes criterios para la evaluación de las actividades:

- 1. Reglas generales
 - a. La relevancia del proyecto científico en que se enmarca la actividad propuesta (20 %)
 - b. La justificación de la actividad propuesta y de los cálculos a realizar en la RES para la consecución del proyecto científico global (30 %)
 - c. La calidad científica del grupo solicitante (10%)
 - d. La experiencia y capacitación en el cálculo de alto rendimiento (10 %)
 - e. La necesidad real de supercomputación para realizar el cálculo (20 %)
 - f. La adecuación técnica del proyecto a la arquitectura de los recursos de la RES (10 %)

- 2. Evaluación de los resultados presentados por las actividades de continuación
 - a. Publicaciones presentadas como resultado del acceso de actividades anteriores
 - b. Resultados técnicos obtenidos en los periodos anteriores
- 3. Utilización adecuada y completa de los recursos asignados en los periodos anteriores
- 4. Participación de grupos españoles en las actividades solicitadas
- 5. Actividad específica dentro de un proyecto de investigación. El acceso a los recursos de la RES corresponde a actividades específicas dentro de un proyecto de investigación, y no corresponden a agrupaciones de diferentes actividades de investigadores de comunidades virtuales.
- 6. Seguir adecuadamente las obligaciones adquiridas en la utilización de MareNostrum y los otros recursos de la RES
 - a. Envío a la RES de copia electrónica de las publicaciones científicas en las cuales el uso de los recursos de la RES ha resultado determinante.
 - b. Mencionar explícitamente en las publicaciones científicas la ayuda del RES en su proyecto
 - c. Cumplimiento de las normas de utilización de los recursos de la RES y de las políticas de seguridad y confidencialidad determinados por la RES.
 - d. No hacer negocio con los resultados obtenidos en los recursos de la RES bajo el formato "Investigación Pública"
 - e. Proporcionar anualmente información y documentación, como vídeos, presentaciones, y cualquier otro material, para ser utilizado como material divulgativo de la RES.
- 7. Dada la alta competencia por recursos y la cantidad total disponible de estos, se recuerda a los proyectos que solicitan muchas horas que PRACE (www.prace-ri.eu) ofrece cantidades de horas a partir de 15 millones anuales, disponiendo de dos evaluaciones de proyectos anuales.

4. Consideraciones adicionales

4.1. Actividades industriales

Cualquier actividad industrial está sujeta a las mismas condiciones de calidad que las actividades de investigación pública. Todos los usuarios con actividades industriales, y con acceso a las máquinas de la RES deben pagar por el acceso a los recursos siempre que las actividades no sean incluyan en el concepto de Open R&D. El precio se calcula para cada una de las actividades que lo indiquen, teniendo en cuenta los recursos solicitados (humanos y técnicos) y el interés científico/económico de la actividad.

4.2. Política de uso de disco

En la actual resolución, se ha realizado asignación no sólo de tiempo de CPU, sino de espacio de almacenamiento. Se ha tenido en cuenta el espacio solicitado, así como el espacio disponible y la eficiencia en la utilización de los recursos.

Para cada actividad, se ha asignado capacidad en tres espacios diferentes:

- Projects: para tener almacenados los resultados de las simulaciones que se necesitan durante todo el periodo de asignación
- Scratch: espacio necesario para realizar las simulaciones en cada momento. Se debe considerar que este es un espacio de disco que se debe liberar 7 días después de haber finalizado la simulación que lo ha producido

4.3. Paralelismo compulsivo

Para mejorar la eficiencia de los sistemas, es necesario que todas las actividades que han planteado simulación que requieren paralelismo compulsivo (muchas ejecuciones del mismo programa, con variación de los datos de entrada), utilicen la herramienta COMPSs (https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar). El envío de trabajos secuenciales al sistema se limitará.

El equipo de soporte del BSC-CNS y equipo del Nodo Computacional del INB en el BSC, ofrecerán la ayuda necesaria para portar los códigos a esta tecnología.

Se debe contactar con support@bsc.es.

4.4. COVID-19

De acuerdo con el RD8/2020 de medidas urgentes extraordinarias para hacer frente al impacto económico y social del COVID-19, en el que se establecen medidas de apoyo a la investigación sobre el COVID-19 y en el que se identifica la lucha contra el COVID-19 como objetivo prioritario de la acción de Gobierno, fomentando la investigación sobre la enfermedad para el desarrollo de medicamentos eficaces y vacunas, que ayuden a contener el impacto de futuros brotes, se propone al Consejo de la RES la inclusión con carácter temporal en el protocolo de acceso de los siguientes criterios:

- para las actividades lideradas o con participación cierta de investigadores localizados en España
- para la actividades que superen un mínimo umbral de calidad
- tendrán prioridad con carácter temporal indefinido, hasta que el Consejo decida finalizarlo, hasta alcanzar el 50% de la capacidad de cada periodo. Si en algún momento se superara este límite, el Comité de Acceso, podría decidir cómo proceder respecto al exceso: ejecutarlo, o priorizarlo, o demorarlo al periodo siguiente, ...desde luego se mantienen las premisas- para las actividades lideradas o con participación cierta de investigadores localizados en España- para la actividades que superen un mínimo umbral de calidad

Un total de 10 actividades relacionadas con COVID han obtenido acceso a los recursos de la RES, con más de 39 millones de horas, que significa un 22% de los recursos totales disponibles.

5. Listados y asignaciones

A continuación, se incluye la lista de las actividades que tendrán acceso a los diferentes nodos de la RES, con las asignaciones en miles de horas, y las capacidades en Gigabytes de los diferentes sistemas de ficheros. Las actividades asignadas se indican en miles de horas correspondientes a cada máquina (se ha considerado un rendimiento a la baja en cada máquina, de forma que el número de horas asignadas se corresponde en la mayoría de los casos con el correspondiente de las horas solicitadas). En el caso de acceso a BSC, se indica acceso a MareNostrum abreviado con MN, MareNostrum con Power9 y Volta100 abreviado como P9, y a MinoTauro abreviado con MT.

Lista de actividades aceptadas con acceso estándar.

Líder Título	Con prioridad	Sin prioridad	Projects	Scratch	Site/Máquina
--------------	------------------	------------------	----------	---------	--------------

Adrian Lozano-Duran	Wall-modeled large-eddy simulation of a realistic aircraft in high-lift configuration	4.500		4.096	4.096	BSC/MN
Albert Bruix	Structure and oxidation state of ceria-supported PtOx clusters under reaction conditions: global optimization and ab inito thermodynamics analysis	687,60		1.500	1.500	IAC
Alexandre Fabregat Tomas	Numerical investigation of turbulent dispersion of infectious aerosol clouds generated by sneezes and other violent respiratory events.	1.000		1.500	1.500	BSC/MN
Alexandre Fabregat Tomas	Turbulent dispersion and surface deposition of pathogen-laden droplets in enclosed rooms.	3.000		1.500	1.500	BSC/MN
Andres Pacheco Pages	Monte Carlo Simulation for the ATLAS Experiment at the CERN LHC at the MareNostrum by IFAE/PIC Tier-1	4.550		5.000	5.000	BSC/MN
Anne DEJOAN	Numerical study of intrinsic flame instabilities in Hele-Shaw cells		200	3.000	3.000	UAM
Antonio David Pozo Vázquez	High-resolution WRF simulations for assessing low carbon power systems in Spain (HIGHWAYS)	1.760		45.000	45.000	UMA
Antonio Picón	Attosecond x-ray spectroscopy in Floquet and Chern insulators with electron-electron effects	900		1.000	300	UAM
Beatriz Trenor Gomis	Computational Mechano-Electric Model of the Human Heart to Design Personalized Therapies (meHeart)	2.404,80		10.000	1.000	BSC/MN

Carles Bona Casas	Glycocalyx as a barrier	6.000		20.000	10.000	BSC/MN
Carme Rovira	Elucidating molecular mechanisms of disease- related glycosidases	128		14.300	14.300	BSC/P9
Camb Neviia		972		14.300	14.300	BSC/MN
Carme Rovira Virgili	Elucidating mechanisms of glycosidic bond	128		14.300	14.300	BSC/P9
Carme Rovila Vilgiii	biosynthesis: protein fucosylation	600	350	14.300	14.300	BSC/MN
Cecilia Scannapieco	Investigating the star formation rates of galaxies with cosmological simulations		600	800	10.000	UV
César González Pascual	Theoretical simulations of novel Magnetic Carbides immersed in a graphene-based matrix	132	200	1.000	1.000	CENITS
Daniel Argüeso Barriga	Generation of high-resolution present-climate information on precipitation extremes over the western Mediterranean	3.050		30	10	BSC/MN
Daniel Mira	Pollutant predictions of liquid biofuels for transportation under engine-like conditions	2.500		15.000	15.000	BSC/MN
Daniel Nóbrega Siverio	Coronal Bright Points on the Sun: a study from the photosphere to the corona.	2.000		2.000	4.000	BSC/MN
David Expósito Singh	Simulating COVID-19 propagation at a European-level	704		500	40	UV
David Mateos	Extreme Holography	2.300	700	10.000	10.000	BSC/MN

David Torrents	Filling the sexual gap: Recovering the role of chromosome X in complex disease risk and sexual differences		1.000	50.000	50.000	BSC/MN
Edilbereto Sánchez González	Particle in cell simulations of electrostatic turbulence in stellarators plasmas	5.000		22.000	10.000	BSC/MN
Emilio Artacho	Post-irradiation dynamics in materials relevant for space exploration via first-principles methods	1.500		10.000	20.000	BSC/MN
Enrique Marcos Benteo	Identification of active and inactive de novo protein binders by molecular dynamics simulations	2.318,40		2.000	4.000	CESGA
Enrique Marcos Benteo	Computational de novo design of immunoglobulins	918,24		1.000	2.000	BSC/MN
F. Javier Luque	Design of azobioisosteres of curcumin and taxifolin for the photodynamic control of antiaggregating agents	1.100	100	6.000	2.000	UZ
Fernando Martín García	Looking for electrode next generation for single molecule devices		300	600	600	IAC
Fernando Martín García	Imaging, decoherence, and attosecond probing of ionization-induced charge migration in molecules		2.000	300	12.000	BSC/MN
Ferran Feixas	Unraveling the Graded Millisecond Allosteric Activation of Imidazole Glycerol Phosphate Synthase	115,20		5.000	5.000	BSC/MT

Francesc Illas i Riera	Unravelling the origin of the excellent catalytic performance of supported molybdenum carbide nanoparticles for carbon dioxide activation	600	100	900	1.500	NASERTIC
Francesc Illas i Riera	Origin of the selectivity on the conversion of CO2 on ceria supported Ni catalyst from multiscale simulations	1.848		900	1.500	CENITS
Francesc Viñes Solana	Water Splitting on ZnO Nanostructures	460		300	500	SCAYLE
Francesc Xavier Trias Miquel	Direct and Large-Eddy Simulations for creating reduced-order data-driven models for improving the indoor environment air quality		1.000	256	12.288	BSC/MN
Francisco J. Gordillo Vázquez	Electro-hydrodynamic and kinetic simulations of streamers in thundercloud corona discharges and high altitude atmospheric electrical discharges as potential natural sources of key greenhouse gas emissions	3.000	1.800	1.000	4.000	BSC/MN
Francisco Javier Salvador Rubio	Influence of the working fuel on the primary breakup of prefilming airblast atomization for aeronautical burners	4.000	2.313	18.000	40.000	BSC/MN
Grigory E. Astrakharchik	Ab initio simulation of a bright soliton in a waveguide		1.000	200	200	BSC/MN
Horacio Pérez-Sánchez	Discovery of SARS-CoV-2 inhibitors through large-scale Virtual Screening methods	5.000		10.000	10.000	BSC/MN
Ignacio Pagonabarraga	Collective behavior of active matter in complex environments	9.999		40.000	40.000	BSC/MN

Iñaki Tuñón	MultiScale Simulations for the Design and	350		6.000	8.000	BSC/P9
man runon	Testing of SARS-CoV-2 3CL Protease Inhibitors	7.800		8.000	9.000	BSC/MN
Inés Corral	Photophysical and photochemical validation of alien genetic building blocks and N-nucleobases ancestors	4.000		900	1.500	BSC/MN
J. Guilherme Vilhena	Meta-sable conformers of on-surface synthesized pi-conjugated 1D chains: mechanical stabilization and stereo-chemical control of tribological properties.	100		6.500	6.500	BSC/P9
Javier Carrasco Rodríguez	First-principles assessment of novel olivine LiFeSO3N phases for positive electrodes in Li- ion batteries	840		750	600	BSC/MN
Javier Carrasco Rodríguez	Reactive dynamics study of the interface between solid-state sulfide electrolytes and Limetal anodes	728		850	700	SCAYLE
Javier LLorca	Design of new catalysts with improved performance for the oxygen reduction reaction	240	100	1.500	20	BSC/P9
Javier LLorca	through first principles simulations and elastic strain engineering	370		1.500	20	BSC/MT
Joan Torras Costa	Modeling of an interface between the modified surface of a polyester filter with the spike glycoprotein of SARS-CoV-2	1.280		900	300	BSC/MN
Joaquim Rigola Serrano	DNS of reactive mass transfer in turbulent bubbly flows in vertical channels	2.100	500	3.072	3.072	BSC/MN

	T					
José Javier Plata Ramos	Computational modelling and design of thermoelectric materials based on metal chalcogenides and oxychalcogenides: the effects of the chemical composition	770		750	705	CENITS
José M. Hernández Calama	MC Simulation for the CMS Experiment at the CERN LHC	6.000		150.000	15.000	BSC/MN
Jose Maria del Peso Malagon	ATLAS (LHC) simulation of detector response to proton-proton collisions (UAM Phase 1)	1.150		4.000	4.000	BSC/MN
José María García Oliver	Prediction of combustion and soot production in aero-engine burners using large -eddy simulations	1.660		5.000	10.000	BSC/MN
Josep de la Puente	Urgent Earthquake Simulation Demonstrator	5.105		20.000	4.000	BSC/MN
Konstantin NEYMAN	Formation and modification of single-atom sites on the surface of bimetallic catalysts	320		900	900	UMA
Laura de la Torre Ramos	CESM-WACCM simulations with high vertical resolution and geoengineering options	1.000		1.200	100	UC
Linda Angela Zotti	The role of metal ions in the electron transport through protein-based junctions	306	190	600	600	SCAYLE
Manuel Angel Ortuño Maqueda	First-Principles Simulations of Ionic Liquids for Ammonia Production	250		500		NASERTIC
Maria Veronica Ganduglia-Pirovano	Study of Methane Steam Reforming on Ceria- based Bimetallic Ni/Pt Catalysts	1.500	362	400	400	BSC/MN

Mariana A. B. de Morais	Molecular mechanisms of glycoside hydrolases for biochemicals production		400	4.500	4.500	BSC/MN
Mariano Curti	Computational design of chromophore - protein	56		2.000		BSC/P9
Manano Curti	assemblies for sunlight conversion	168		1.000	750	CSUC/PIR
Marino Arroyo	Cell and tissue mechano-chemical dynamics	4.000		10.000	200	SCAYLE
Marino Arroyo	Intermediate filament networks: from biological function to biomimetic material resilience		149	100	250	SCAYLE
Martin Obergaulinger	Towards protomagnetar formation in stellar core collapse	2.600		3.000	10.000	BSC/MN
Massimiliano Stengel	First Principles Flexomagnetism	1.200		2.500	30	CSUC/PIR
Miguel Ángel Aloy Torás	Magnetospheric dissipation: Global instabilities, local plasma wave dynamics	3.000	1.216	10.000	6.000	BSC/MN
Miguel Ángel Aloy Torás	Magnetospheric dissipation: Global energy cascades	2.000		8.000	6.000	UV
Miguel Ángel Fosas de Pando	Optimization of flow through linear cascades using derivative-free and adjoint-based methods		114	8.192	16.384	CESGA
Miguel Pruneda	Enhancing topological properties in TMDs by substitutional doping	220		100	100	CSUC/CAN
					-	

Miquel Solà	Covalent charge transfer complexes of fullertubes. Density functional study of the reactivity of fullertubes in the Bingel reaction.	299		100	300	BSC/MN
Mireia Peral Millán	Geodynamic modeling of subduction zones. Case studies: Western and Central Mediterranean and Andes Cordillera.	1.781		2.400	4.800	BSC/MN
Octavio Roncero	Pressure effects in reactions of complex organic molecules at low temperatures: a quantum ring polymer molecular dynamics study	1.700	100	100	50	UAM
Oriol Jorba Casellas	Impact of the COVID-19 lockdowns upon air pollution at the European and national level	4.802		60.000	200.000	BSC/MN
Pablo G. Lustemberg	Unraveling the role of surface steps in Metal- Ceria catalysts in the catalytic activity of CH4: Mimicking the real catalyst	854		500	500	IAC
Pablo Gamallo Belmonte	CO2 conversion into light fuels activated by H/H2 over transition metal encapsulated in MFI zeolites (TM@S-1)	2.000		900	1.500	UC
Pablo Ordejón	First principles simulations of amorphous GeSe compounds for memory selectors	2.500		500	500	BSC/MN
Pablo Ordejón	A multiscale approach to bias-dependent electrochemical processes at metallic-aqueous interfaces: corrosion inhibitors	1.800		500	500	IAC
Prof. Marcel Swart	Formation of diamond-core Fe(IV)2(mu-O)2 complexes revisited	345,60		100	600	BSC/MN

Raffaello Bianco	High-pressure phase diagram of YH9 and YH10 from first principles: structural and superconducting properties including quantum anharmonic effects	3.000		2.000	20.000	BSC/MN
Ramon Crehuet	Biophysical determinants for the formation of membraness organelles by intrinsically disordered proteins	75		300		BSC/P9
Ramon Crehuet	Functional dynamics of human DNA polymerase delta	350		1.000	1.000	CENITS
Reza Rezapour	Nucleobases mutation recognition by graphene- based biosensors by means of quantum mechanical simulations	400		500	250	IAC
Ricardo Díez Muiño	Attosecond streaking and time-dependent photoelectron emission from two dimensional materials	4.000		500	5.000	BSC/MN
Riccardo Rurali	Magnetophononic effects in FeRh	1.200	200	50	50	CESGA
Roberto Navarro	High-fidelity modelling of streams mixing in a three-way junction	356		2.000	2.000	BSC/MN
Rubén Pérez	On-Surface Chemistry: Controlling the Halogen bond properties by the substrate	461		3.000	3.000	UAM
Ruben Perez Perez	Understanding the structure and electron transfer properties of different single-protein junctions	221		6.000	6.000	BSC/MT

Sandra RodriguezGonzalez	Assessment of quinoid-resonance structures in the electron transport through single molecule junctions II	675		300	600	UV
Santiago González de la Hoz	ATLAS production and simulation jobs running on HPC facilities (IFIC Phase VI)	3.400		4.000	4.000	BSC/MN
Sascha Husa	Compact binary coalescence modelling toward	9.750		12.000	35.000	BSC/MN
Sascila nusa	LIGO/Virgo design sensitivity and next generation detectors	1.000		2.000	6.000	UMA
Sofía Calero	Functionalized Zr-MOF-808 as a platform for iron catalysis	510		3.000	3.000	NASERTIC
Stefan Bromley	Mechanisms of Hydroxylation of Spherical TiO2 Nanoparticles: Implications for Photocatalysis	1.200		300	600	UV
Stefan Bromley	Design of 2D Covalent Organic Radical Frameworks with Electric Field-mediated Tunable Magnetic Properties	1.505		200	1.000	UV
Stephan Mohr	Surface Structure of Gas Hydrate Nanoparticles		300	2.500	5.000	UC
Vicent Moliner	Computer Design of Double Acting Inhibitors of SARS-CoV-2 Mpro by QM/MM Simulations: Towards the Design of COVID-19 Antiviral Drugs	6.236,40		200	500	BSC/MN
Victor Guallar Tasies	In silico toxicity assessment for SARS-CoV-2 protease binders	3.600		4.000	4.000	BSC/MN
Xavier Barril	Finding leads in billion-sized chemical collections	160		5.000		CSUC/PIR

Xavier Luri Carrascoso Gaia: Image parameters determination and cross match of observations for the fourth Data Reduction Cycle (DRC-04)		10,80	100	100	BSC/P9
	2.650	800.000	700.000	BSC/MN	
Xavier Vilasís Cardona	Porting LHCb-Dirac to BSC-HPC	500	5.000	5.000	BSC/MN

6. Siguientes pasos

Se dispone de un entorno web para poder acceder durante el periodo a toda la información relacionada con la actividad.

Está disponible a través de la web: http://www.bsc.es/RES. Es una zona protegida, que puede accederse con el correo electrónico del líder de la actividad, o de la persona que presentó la solicitud.

Desde esta zona, que está en construcción y evolución, se puede:

- Dar de alta a los usuarios/investigadores que participan en esta actividad. Se hace de forma automática, pero es imprescindible firmar el documento y devolverlo por correo antes de 15 días de dar el alta. De otra forma se anulará el acceso al sistema hasta que se reciba la documentación. Esto debe realizarse tanto para los usuarios de actividades de continuación como para actividades nuevas.
- Consultar la información proporcionada por el comité de acceso.
- Consultar los recursos asignados para la actividad. Es importante comprobar que no hay errores en estos datos, ya que serán los que se apliquen en los diferentes sites.
- Analizar el consumo semanal de recursos.

Una vez rellenada la información, el equipo de soporte local del site de asignación se pondrá en contacto con los usuarios para proporcionar la información necesaria.