Polarized radiation transfer in multidimensional models of the solar atmosphere

Tanausú del Pino Alemán

19th September 2019

- Magnetic fields play a key role in the physics of the solar atmosphere
- Responsible of the solar activity
- Forms the plasma structures of the outer solar atmosphere
- Key to explain the existence of a hot (1 million degrees) corona

λ [Å]

8

5

- Cannot be directly measured
- We measure electromagnetic radiation (photons)
- The measured radiation has information about the properties of the emitting plasma

- Polarization is present when there is no symmetry:
 - Scattering: radiation pumping by anisotropic radiation
 - Zeeman effect: energy splitting of degenerate atomic levels
 - Hanle effect: relaxation of quantum coherences

- Polarization is present when there is no symmetry:
 - Scattering: radiation pumping by anisotropic radiation

Magnetic effects

- Zeeman effect: energy splitting of degenerate atomic levels
- Hanle effect: relaxation of quantum coherences

The Forward Problem Radiation Transfer

- Describes the radiation-matter interaction
- Two parts:

 How is the radiation propagated through a medium

 How are the atoms excited within the atmospheric radiation field

Radiation Transfer Equation

How the radiation is modified along its propagation

$$\frac{d}{ds} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = - \begin{pmatrix} \eta_I & \eta_Q & \eta_U & \eta_V \\ \eta_Q & \eta_I & \rho_V & -\rho_U \\ \eta_U & -\rho_V & \eta_I & \rho_Q \\ \eta_V & \rho_U & -\rho_Q & \eta_I \end{pmatrix} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} + \begin{pmatrix} \epsilon_I \\ \epsilon_Q \\ \epsilon_U \\ \epsilon_V \end{pmatrix}$$

Radiation Transfer Equation

How the radiation is modified along its propagation

$$\frac{d\mathbf{S}}{ds} = -\hat{\mathbf{K}} \cdot \mathbf{S} + \epsilon$$

Statistical Equilibrium Equations

How the atom is excited within a radiation field

$$\left[\frac{d}{dt}^{L}\rho_{Q}^{K}(J,J')\right]_{\text{Rad}} = \sum_{L_{\ell}J_{\ell}J_{\ell}'K_{\ell}Q_{\ell}}^{L_{\ell}}\rho_{Q_{\ell}}^{K_{\ell}}(J_{\ell},J_{\ell}')\mathbb{T}_{A}(LJJ'KQ,L_{\ell}J_{\ell}'J_{\ell}'K_{\ell}Q_{\ell}) \\
+ \sum_{L_{u}J_{u}J_{u}'K_{u}Q_{u}}^{L_{u}}\rho_{Q_{u}}^{K_{u}}(J_{u},J_{u}')\left[\mathbb{T}_{E}(LJJ'KQ,L_{u}J_{u}J_{u}'K_{u}Q_{u}) + \mathbb{T}_{S}(LJJ'KQ,L_{u}J_{u}J_{u}'K_{u}Q_{u})\right] \\
- \sum_{J''J'''K'Q'}^{L}\rho_{Q'}^{K'}(J'',J''')\left[\mathbb{R}_{E}(LJJ'KQJ''J'''K'Q') + \mathbb{R}_{S}(LJJ'KQJ''J'''K'Q') + \mathbb{R}_{S}(LJJ'KQJ''J'''K'Q')\right]$$

Statistical Equilibrium Equations

How the atom is excited within a radiation field

$$\frac{d\rho_i}{dt} = \sum_{j \neq i} R_{ji}\rho_j - \sum_j R_{ij}\rho_i = 0$$

$$\frac{d\mathbf{S}}{ds} = -\hat{\mathbf{K}} \cdot \mathbf{S} + \epsilon$$

$$\frac{d\rho_i}{dt} = \sum_{j \neq i} R_{ji}\rho_j - \sum_j R_{ij}\rho_i = 0$$

$$\frac{d\mathbf{S}}{ds} = -\hat{\mathbf{K}}(\rho)\mathbf{S} + \epsilon(\rho, \mathbf{S})$$

$$\frac{d\rho_i}{dt} = \sum_{j \neq i} R_{ji} (\mathbf{S}) \rho_j - \sum_j R_{ij} (\mathbf{S}) \rho_i = 0$$

- Coupled
- Non-linear
- Non-local
- Most difficult (costly) problem to solve in solar physics

$$\frac{d\mathbf{S}}{ds} = -\hat{\mathbf{K}}(\rho)\mathbf{S} + \epsilon(\rho, \mathbf{S})$$

$$\frac{d\rho_i}{dt} = \sum_{j \neq i} R_{ji}(\mathbf{S}) \rho_j - \sum_j R_{ij}(\mathbf{S}) \rho_i = 0$$

Spatial nodes:

$$nx, ny, nz \sim 10^2$$
$$nx \cdot ny \cdot nz \sim 10^6$$

Spatial nodes:

$$nx, ny, nz \sim 10^2$$
$$nx \cdot ny \cdot nz \sim 10^6$$

Directions:

$$n\Omega \sim 10^2$$

Spatial nodes:

$$nx, ny, nz \sim 10^2$$
$$nx \cdot ny \cdot nz \sim 10^6$$

Directions:

$$n\Omega \sim 10^2$$

Frequencies (per line):

$$nv \sim 10^2$$

Spatial nodes:

$$nx, ny, nz \sim 10^2$$
$$nx \cdot ny \cdot nz \sim 10^6$$

• Directions:

$$n\Omega \sim 10^2$$

• Frequencies (per line):

$$n\nu \sim 10^2$$

• Polarization:

$$ns \sim 4$$

- Statistical equilibrium:
 - 10 unknowns per spatial node $\rightarrow 10^7$

- Statistical equilibrium:
 - 10 unknowns per spatial node $\rightarrow 10^7$
- Radiation field:
 - Polarization in every node, frequency, and direction,
 10^{10} unknowns

- Statistical equilibrium:
 - 10 unknowns per spatial node $\rightarrow 10^7$
- Radiation field:
 - Polarization in every node, frequency, and direction, 10^{10} unknowns
- The problem is iterative \rightarrow repeat $\sim 10^2$ times

• Simplest problem: two-level atom $J_l=0$; $J_u=1$

- Statistical equilibrium:
 - 10 unknowns per spatial node $\rightarrow 10^7$
- Radiation field:
 - Polarization in every node, frequency, and direction, 10^{10} unknowns
- The problem is iterative \rightarrow repeat $\sim 10^2$ times

Parallelization is a **must**

- Library to solve the problem of the generation and transfer of polarized radiation in 3D atmospheres
 Štěpán & Trujillo Bueno (2013)
- Modules to solve specific problems
- Almost linear scaling with #CPU

- Domain decomposition:
 - Distributes work
 - Eases memory constrains

Štěpán & Trujillo Bueno (2013)

Snake algorithm:

Štěpán & Trujillo Bueno (2013)

Linear scaling:

- Close to be public with the modules:
 - Coherent scattering (Jaume Bestard, J., del Pino Alemán, T., and Štěpán, J.)
 - General two-level (Štěpán, J.)
 - General multi-level (del Pino Alemán, T.)

Applications in MareNostrum

- Every application uses the PORTA code
- But every application is different
 - Preliminar investigations (1D theoretical studies)
 - Preliminar computations (preparation of 3D models and computation of intermediate quantities)
 - Different modules
- I will only talk about the very final results of some investigations
 - And only about one or two results of the chosen ones

- Hydrogen Lyman-α:
 - Theoretical study (Štěpán et al. (2015))
 - Diagnostics of CLASP data (Trujillo Bueno et al. (2018))
- Hydrogen Balmer-α:
 - Theoretical study (Jaume Bestard PhD. thesis, WIP)
- Calcium 4227 Å:
 - Theoreical study (Jaume Bestard PhD. thesis, WIP)
- Calcium H-K and infrared triplet:
 - Theoretical study (Štěpán and Trujillo Bueno (2016))
 - Comparison with observations (Jurčák et al. (2018))

- Mg II k-line:
 - Theoretical study (del Pino Alemán PhD. thesis (2015))
- Sr I 4607 Å:
 - Theoretical study and comparison with observations (del Pino Alemán et al. (2018))
- Radiation transfer theoretical study:
 - Polarization with horizontal inhomogeneities (Tichý et al. (2015))

Some Results

• We carried out the detailed radiation transfer modeling of the Lyman- α line

 Theory predicted center-to-limb variation of the linear polarization in the center of the Lyman-α line

But observations did not show any

- But observations did not show any
- The 3D model could not reproduce the observations

Kano et al. (2017)

- What other properties should the 3D model have?
- We introduced two parameters:
 - Geometrical complexity (compression factor)
 - Magnetization (magnetic field strength factor)
- Bayesian approach: what is the combination of parameters with the most likelihood?

Photospheric small scale magnetization

The photospheric magnetic field has structure at very small scales

- The resolution limit of solar observations limits our detection capability
- More field the better the resolution

 Several authors with different approaches have provided estimations of .

- Stenflo (1982): >10G
- Faurobert et al. (1995): 10-20G
- Trujillo Bueno et al. (2004): 100G

All previous 3D (Hanle) calculations assumed non spatially resolved magnetic fields

Rempel (2014) provided 3D
magneto-convection simulations
with significant level of
small-scale magnetic activity
≈170G at height ≈ 0km

del Pino Alemán et al. (2018)

 We carried out the detailed radiation transfer modeling of Sr I 4607Å in this model

del Pino Alemán et al. (2018)

- We carried out the detailed radiation transfer modeling of Sr I 4607Å in this model
- Compare with center-to-limb variation observations

- We carried out the detailed radiation transfer modeling of Sr I 4607Å in this model
- Compare with center-to-limb variation observations
- The level of magnetization is compatible with the observations:
 ≈170G at the surface
- (and a lot of other theoretical/statistical considerations I have no time to talk about now)

That is a lot of forward modeling but...

Introduction

 λ [Å] Na I D1 slit observation with ZIMPOL@IRSOL

Introduction

• Find the *x*-parameters that fulfills

$$y = F(x) + \varepsilon$$

y: data

F: forward problem

 ε : noise

Find the x-parameters that fulfills

$$y$$
: data y : forward problem ε : noise

• We cannot do $x = F^{-1}(y)$. We solve the optimization problem

$$x = \underset{x}{argmin} \|y - F(x)\|_{2}^{2}$$

Find the x-parameters that fulfills

$$y$$
: data $y = F(x) + \varepsilon$ F : forward problem ε : noise

• We cannot do $x = F^{-1}(y)$. We solve the optimization problem

$$x = \underset{x}{argmin} \|y - F(x)\|_{2}^{2}$$

Still ill-posed. We introduce some regularization

$$x = \underset{x}{argmin}\{\|y - F(x)\|_{2}^{2} + g(x)\}$$

• Example: sparsity $g(x) = \lambda ||x||_0$; best subset

- We want to find the simplest model that reproduce the data
- Evaluating F the minimum amount of times
- With a method that scales linearly with #CPU
- First attempt (to my knowledge) of inversions with a 3D forward solver

Picture by Rob Glover

• Sparsity is a rare ocurrence in the 'real' space

Picture by Rob Glover

 Sparsity is a rare ocurrence in the 'real' space

• But can be a common occurrence in a transformed space

• Find the q-parameters, images of the x-parameters that fulfills

$$q \subseteq DCT(x)$$
: $F(IDCT(q)) + \varepsilon = y$

• Find the q-parameters, images of the x-parameters that fulfills

$$q \subseteq DCT(x)$$
: $F(IDCT(q)) + \varepsilon = y$

But we cannot test every q-parameter to check if it is relevant

• Find the q-parameters, images of the x-parameters that fulfills

$$q \subseteq DCT(x)$$
: $F(IDCT(q)) + \varepsilon = y$

- But we cannot test every q-parameter to check if it is relevant
- Time constrains force us to keep only the smoother modes

• Find the q-parameters, images of the x-parameters that fulfills

$$q \subseteq DCT(x)$$
: $F(IDCT(q)) + \varepsilon = y$

- But we cannot test every q-parameter to check if it is relevant
- Time constrains force us to keep only the smoother modes
- But we loose details

We introduce tiling

We loose a bit of spatial coherency

- We loose a bit of spatial coherency
- But everything is still consistent because the tiles interact radiativelly in the forward solver
- We win:
 - More resolution capability
 - Parallel computation of each mode in every tile speed-up by 2-3 orders of magnitude

- Algorithm:
 - start with very sparse solution
 - iterate until convergence
 - if the agreement not good enough: increase modes and repeat
- Result:
 - model with the minimum number of parameters
 - physically consistent

30 iterations

- This is a recent test of feasibility
- We are planing to apply this inversion tool to real data very soon

Thank you for your attention