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Introduction

Magnetic fields play a key role in the
physics of the solar atmosphere

Responsible of the solar activity

Forms the plasma structures of the
outer solar atmosphere

Key to explain the existence of a hot
(1 million degrees) corona
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Cannot be directly measured

We measure electromagnetic
radiation (photons)

The measured radiation has
information about the properties of
the emitting plasma
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Polarization is present when there is no symmetry:
 Scattering: radiation pumping by anisotropic
radiation
e Zeeman effect: energy splitting of degenerate
atomic levels
 Hanle effect: relaxation of quantum coherences
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 Polarization is present when there is no symmetry:
 Scattering: radiation pumping by anisotropic
radiation
Zeeman effect: energy splitting of degenerate

Magneti .
agnetic atomic levels

effects

Hanle effect: relaxation of quantum coherences
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The Forward Problem
Radiation Transfer



Radiation Transfer

e Describes the radiation-matter interaction

* Two parts:

W@ )ww  How is the radiation propagated
through a medium

v @) <o * How are the atoms excited within the

ﬁ_ﬂ % ﬁ% atmospheric radiation field
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Radiation Transfer Equation

How the radiation is modified along its propagation
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Radiation Transfer Equation

 How the radiation is modified along its propagation
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Statistical Equilibrium Equations

e How the atom is excited within a radiation field

d
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Statistical Equilibrium Equations

e How the atom is excited within a radiation field
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Radiation Transfer




Radiation Transfer




Radiation Transfer

e Coupled

* Non-linear

* Non-local

e Most difficult (costly)

problem to solve in solar
physics



Radiation Transfer

* Spatial nodes:

nx,ny,nz ~ 104

nx-ny-nz~ 10°
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Radiation Transfer

* Spatial nodes:
nx,ny,nz ~ 10°
nx-ny-nz~ 10°

* Directions:
nQ ~ 102




Radiation Transfer
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Spatial nodes:
nx,ny,nz ~ 104
nx-ny-nz~ 10°

Directions:
nQ ~ 102

Frequencies (per line):
nv ~ 102



Radiation Transfer
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Spatial nodes:
nx,ny,nz ~ 104
nx-ny-nz~ 10°

Directions:
nQ ~ 102

Frequencies (per line):
nv ~ 102

Polarization:
ns ~ 4



Radiation Transfer
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* Simplest problem: two-level atom J, =0; J, =1 \4 /
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e 10 unknowns per spatial node - 107



Radiation Transfer

Simplest problem: two-level atom J; =0; J, =1 \ I /

Statistical equilibrium:
e 10 unknowns per spatial node - 107

Radiation field:
 Polarization in every node, frequency, and direction,
101% unknowns



Radiation Transfer

Simplest problem: two-level atom J; =0; J, =1 \ I /

Statistical equilibrium:
e 10 unknowns per spatial node - 107

Radiation field:
 Polarization in every node, frequency, and direction,

1019 unknowns

The problem is iterative — repeat ~10? times



Radiation Transfer

Simplest problem: two-level atom J; =0; J, =1 \ I /

Statistical equilibrium:
e 10 unknowns per spatial node - 107

Radiation field:
 Polarization in every node, frequency, and direction,

1019 unknowns

The problem is iterative — repeat ~10? times

Parallelization is a must







PORTA

Library to solve the problem of the generation and transfer of
polarized radiation in 3D atmospheres
Stépdan & Trujillo Bueno (2013)

Modules to solve specific problems

Almost linear scaling with #CPU
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* Domain decomposition:

 Distributes work
 Eases memory constrains
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Stépan & Trujillo Bueno (2013)



Snake algorithm:

PORTA

Time
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Linear scaling:

Speedup S(LM)
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* Close to be public with the modules:

 Coherent scattering (Jaume Bestard, J., del Pino Aleman, T.,
and Stépan, J.)

e General two-level (Stépan, J.)

e General multi-level (del Pino Aleman, T.)



Applications
IN MareNostrum



PORTA

* Every application uses the PORTA code
 But every application is different
* Preliminar investigations (1D theoretical studies)

 Preliminar computations (preparation of 3D models
and computation of intermediate quantities)

e Different modules

* | will only talk about the very final results of some investigations
 And only about one or two results of the chosen ones



PORTA

 Hydrogen Lyman-a:
* Theoretical study (Stépan et al. (2015))
* Diagnostics of CLASP data (Trujillo Bueno et al. (2018))

 Hydrogen Balmer-a:
* Theoretical study (Jaume Bestard PhD. thesis, WIP)

 Calcium 4227 A:
 Theoreical study (Jaume Bestard PhD. thesis, WIP)

 Calcium H-K and infrared triplet:
* Theoretical study (Stépan and Trujillo Bueno (2016))
 Comparison with observations (Jurcak et al. (2018))



PORTA

e Mgl k-line:
 Theoretical study (del Pino Aleman PhD. thesis (2015))

*  Srl14607 A:
* Theoretical study and comparison with observations
(del Pino Aleman et al. (2018))

* Radiation transfer theoretical study:
* Polarization with horizontal inhomogeneities
(Tichy et al. (2015))



Some
Results




Diagnostic of
CLASP observations



Diaghostic of CLASP observations

We carried out the detailed radiation transfer modeling of the
Lyman-a line

P (u=1)




Diagnostic of CLASP observations

Theory predicted center-to-limb variation of the
polarization in the center of the Lyman-a line
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Diaghostic of CLASP observations

 But observations did not show any
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Diaghostic of CLASP observations

 But observations did not show any

* The 3D model could not reproduce the observations
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Diagnostic of CLASP observations

What other properties should the 3D model have?

We introduced two parameters:
 Geometrical complexity (compression factor)
 Magnetization (magnetic field strength factor)

Bayesian approach: what is the combination of parameters with
the most likelihood?



Diagnostic of CLASP observations

Original 3D model
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Photospheric small
scale magnetization



Photospheric small scale magnetism

* The photospheric magnetic field has structure at very small

scales

The resolution limit of
solar observations limits
our detection capability

More field the better the
resolution
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Photospheric small scale magnetism

 Several authors with different approaches have provided
estimations of <B>.
e Stenflo (1982): >10G
* Faurobert et al. (1995): 10-20G

* Trujillo Bueno et al. (2004): 100G



Photospheric small scale magnetism

 All previous 3D (Hanle) calculations assumed non spatially
resolved magnetic fields 0100200 300 400

 Rempel (2014) provided 3D
magneto-convection simulations
with significant level of

small-scale magnetic activity
<B>=170G at height = Okm




Photospheric small scale magnetism

 We carried out the detailed radiation transfer modeling of Sr |
4607A in this model
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Photospheric small scale magnetism

 We carried out the detailed radiation transfer modeling of Sr |
4607A in this model

 Compare with center-to-limb variation observations
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Photospheric small scale magnetism

 We carried out the detailed radiation transfer modeling of Sr |
4607A in this model

 Compare with center-to-limb variation observations

* The level of magnetization
is compatible with the
observations:
<B>=170G at the surface
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That is a lot of
forward modeling
but...
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The inversion problem




The inversion problem

* Find the x-parameters that fulfills

y: data

y = F(x) + ¢ F: forward problem
£: noise



The inversion problem

* Find the x-parameters that fulfills

y: data

y = F(x) 4+ ¢ F: forward problem
£: noise

e We cannot do x = F~1(y). We solve the optimization problem

x = argmin|ly — F(x)|I3
X



The inversion problem

Find the x-parameters that fulfills

y: data
y = F(x)+ ¢ F: forward problem

£: noise
We cannot do x = F~1(y). We solve the optimization problem
x = argmin|ly — F(x)|l5
X
Still ill-posed. We introduce some regularization

x = argmin{lly - FII3 + g(x)}

Example: sparsity g(x) = Al|x]||o; best subset



The inversion problem

We want to find the simplest model that reproduce the data
Evaluating F the minimum amount of times
With a method that scales linearly with #CPU

First attempt (to my knowledge) of inversions with a 3D forward
solver



The inversion problem

* Sparsity is a rare ocurrence
in the 'real’ space



The inversion problem

* Sparsity is a rare ocurrence
in the 'real’ space

e But can be a common occurrence in a transformed space




The inversion problem

* Find the g-parameters, images of the x-parameters that fulfills

q S DCT(x):F(IDCT(q)) + e =y



The inversion problem

* Find the g-parameters, images of the x-parameters that fulfills
q S DCT(x):F(IDCT(q)) + e =y

* But we cannot test every g-parameter to check if it is relevant



The inversion problem

* Find the g-parameters, images of the x-parameters that fulfills
q S DCT(x):F(IDCT(q))+ e =y
* But we cannot test every g-parameter to check if it is relevant

* Time constrains force us to keep only the smoother modes



The inversion problem

Find the g-parameters, images of the x-parameters that fulfills
q S DCT(x):F(IDCT(q))+ e =y

But we cannot test every g-parameter to check if it is relevant

Time constrains force us to keep only the smoother modes

But we loose details
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The inversion problem

 We introduce tiling
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The inversion problem

* We loose a bit of spatial coherency



The inversion problem

We loose a bit of spatial coherency

But everything is still consistent because the tiles interact
radiativelly in the forward solver

We win:
 More resolution capability

* Parallel computation of each mode in every tile
speed-up by 2-3 orders of magnitude



The inversion problem

e Algorithm:
e start with very sparse solution
* iterate until convergence
* if the agreement not good enough:
increase modes and repeat

* Result:
 model with the minimum number of parameters
* physically consistent



The inversion problem

30 iterations




The inversion problem

Model  80iterations

Inversion




The inversion problem

* This is a recent test of feasibility

* We are planing to apply this inversion tool to real data very
soon



Thank you for your attention




