
Programming Distributed
Computing Platforms
with COMPSs

Rosa M. Badia, Javier Conejero, Daniele Lezzi

Workflows & Distributed Computing Group

19/09/2019 13th RES Users Conference

Agenda
14.30 Introduction

14:40 PyCOMPSs syntax
15:20 Overview of COMPSs runtime
15:30 Introduction to dislib

15:40 Break
15:55 Hands-on in MN4:
• PyCOMPSs simple use case in Python

• Use case calling external binaries
• dislib use case
17:00 Closing

www.bsc.es

Introduction

BSC vision on programming models

4

General purpose
Task based

Single address space

Intelligent runtime,
parallelization,

distribution,
interoperability

Program logic
independent of

computing platform
Applications

Power to the runtime

PM: High-level, clean, abstract interface

API

BSC vision on programming models

Average task Granularity:
100 us – 10 ms 10 ms - 1 day

Language bindings:
C, C++, FORTRAN Java, C/C++, Python

Dependences:
Memory address space Files, Objects

Intranode Distributed

StarSs
OmpSs COMPSs

@ SMP @ GPU @ FPGA @ Cluster @ Grids @ Clouds

Programming with PyCOMPSs/COMPSs

• Sequential programming, parallel execution
• General purpose programming language + annotations/hints

• To identify tasks and directionality of data

• Builds a task graph at runtime that express potential concurrency
• Offers a shared memory illusion to

applications in a distributed system
• The application can address larger data

storage space: support for Big Data apps
• Support for persistent storage

• Agnostic of computing
platform

• Enabled by the runtime
for clusters, clouds and
container managed clusters

• Available in MN4
• module load COMPSs

6

COMPSs Architecture

COMPSs runtime

Binding-commons

Python Binding C/C++ Binding

C/C++
App

Java
App

task

Grid Cluster Cloud

task
task

task
task

task

task
task

task

Javassist

task
task

task

Containers

Python
App

Loader

PyCOMPSs/COMPSs runtime

8

• PyCOMPSs/COMPSs applications executed in distributed mode following the master-
worker paradigm

• Description of computational infrastructure in an XML file

• Sequential execution starts in master node and tasks are offloaded to worker nodes

• All data scheduling decisions and data transfers are performed by the runtime

Task Dependecy Graph
Computing infrastructure

COMPSs
Runtime Resource Mgmt.

Task Execution
SchedulingTask

Analysis
Data Mgmt.

Monitoring

Python
binding

Files,
objects

Tasks

Annotated
python code

www.bsc.es

Python Syntax (PyCOMPSs)

Tutorial with Jupyter notebooks

• Instructions in:
• https://github.com/bsc-wdc/notebooks

https://github.com/bsc-wdc/notebooks

www.bsc.es

COMPSs runtime and execution environment

Execution environment

• COMPSs runtime is able to execute in distributed computing
platforms (clusters, clouds, contained manager clusters)

• Main program + runtime started in master node
• Takes care of tasks scheduling, data transfers, etc

• Tasks executed in worker nodes

12

COMPSs workers

COMPSs
Master

Scheduling
Policies

Runtime Architecture

Runtime System

Resource
Management

Job Submission &
Data Transfer

Scheduling

Task Analysis Data Access & Locality

Monitoring
& Tracing

Resource
Providers

Comm.
Protocols

Persistent
Objects

14

Data management in COMPSs

• COMPSs runtime offers the view of a single memory space and
storage system

• Can address memory spaces much larger than the initial space available in
a single node

• This larger memory space is made available to the application in a
transparent way

• Data management
• Objects can be either created by the main program or tasks
• When accessed by tasks executed in different worker nodes, the runtime

will be in charge of transferring the data between them
• Files and/or objects can be renamed/versioned
• Renaming enables further parallelism
• Versioning reduces the number of required transfers

• Runtime supports shared and distributed filesystems
• In the first case, no file transfers are required

Data management in COMPSs

• Serialization
• Due to different address spaces between different nodes, objects in memory

need to be transferred
• Before being transferred are serialized
• Only for objects, not for files
• For Python, Pickle or Dill libraries are used

object1

Task(object1, object2)

serialize

object1

transfer

object1

deserialize

file1

Task(file1, file2)

transfer

Runtime System

Application Task Selection Interface

task task task

Grid Cluster Cloud

Runtime System

Runtime System

Resources

Exec. Mngmt & Data Transfers

Execution Environments Configuration

Communication Adaptor

GAT NIO

Cloud Connector
jClouds rOCCI

project.xml

resources.xml

Master-Worker Comm. Mechanism
• GAT: Restrictred environments (only

ssh access) and Grid Middleware
• NIO: Efficient Persistent workers

implementation in controlled and
secured environments

Application Exec. Desc.
• Selection of resources
• Application Code Location
• Working directory
• Provided as execution

command argument

Resource Scalability
• Provide interaction with

resource providers to create
and destroy new computing
resources

Infrastructure Description
• Describe the available

resource in the infrastructure
• Describe Cloud Providers:

Images and VM Templates

runcompss options
Specifies:

Resources and Project files
Scheduler, Comm. Adaptor
Persistent object storage

Schedulers

Persistent Object Storage

Slurm Docker Mesos

DataClay Hecuba Redis

COMPSs@Cluster
• Execution divided in two phases

• Launch scripts queue a whole COMPSs app execution
• Actual execution starts when reservation is obtained

Cluster Compute
Nodes

Cluster Login Node

Queue System (LSF, PBS, ...)

enqueue_compss Automatically
generated XML files

Application

COMPSs RT

Communication Adaptor

NIO

COMPSs in a Cluster
• Use of enqueu_compss command (instead of runcompss)
• Generates project.xml and resources.xml
• Launches application in the allocation

enqueue_compss \
--exec_time=10 \
--num_nodes=5 \
--tasks_per_node=16 \
--master_working_dir=. \
--worker_working_dir=scratch \
--lang=python \
--comm=integratedtoolkit.nio.master.NIOAdaptor \
--tracing=true \
--graph=true \
/home/bsc19/bsc19776/SC16/wordcount/wc_merge.py \

/gpfs/projects/bsc19/COMPSs_AP PS/wordcount/data/dataset_64f_16mb

• Type “enqueue_compss” to see help and options

Configuration with Job scheduler:
Resources Specification

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<SharedDisk Name="gpfs" />
<SharedDisk Name="gpfs2" />
<ComputeNode Name="s12r1b62-ib0">
<Processor Name="MainProcessor">
<ComputingUnits>24</ComputingUnits>
<Architecture>Intel</Architecture>
<Speed>2.6</Speed>

</Processor>
<Memory>
<Size>92</Size>

</Memory>
<OperatingSystem>
<Type>Linux</Type>
<Distribution>SMP</Distribution>
<Version>3.0.101-0.35-default</Version>

</OperatingSystem>
<Software>
<Application>JAVA</Application>
<Application>PYTHON</Application>
<Application>EXTRAE</Application>
<Application>COMPSS</Application>

</Software>
…

...
<Adaptors>

<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>

</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
<RemoteExecutionCommand>none</RemoteExecutionCommand>

</Ports>
</Adaptor>
…

</Adaptors>
<SharedDisks>
<AttachedDisk Name="gpfs">
<MountPoint>/gpfs/</MountPoint>

</AttachedDisk>
<AttachedDisk Name="gpfs2">
<MountPoint>/.statelite/tmpfs/gpfs/</MountPoint>

</AttachedDisk>
</SharedDisks>

</ComputeNode>
<ComputeNode Name="s12r1b63-ib0">
<Processor Name="MainProcessor">
<ComputingUnits>48</ComputingUnits>
<Architecture>Intel</Architecture>
<Speed>2.6</Speed>

</Processor>
<Memory>
<Size>92</Size>

</Memory>
<OperatingSystem>
…

</ResourcesList>

Generated automatically by
enqueue_compss command in
MN4

Configuration with Job scheduler:
Project Specification

<Project>
<MasterNode>
<SharedDisks>
<AttachedDisk Name="gpfs">
<MountPoint>/gpfs/</MountPoint>

</AttachedDisk>
<AttachedDisk Name="gpfs2">
<MountPoint>/.statelite/tmpfs/gpfs/</MountPoint>

</AttachedDisk>
</SharedDisks>

</MasterNode>

<ComputeNode Name="s12r1b62-ib0">
<InstallDir>/apps/COMPSs/2.5</InstallDir>
<WorkingDir>/home/nct00/nct00002/examples/clustering_comparison/tmp.Ynl9AcAh8D</WorkingDir>
<Application>
<LibraryPath>/home/nct00/nct00002/examples/clustering_comparison</LibraryPath>

</Application>
</ComputeNode>

<ComputeNode Name="s12r1b63-ib0">
<InstallDir>/apps/COMPSs/2.5</InstallDir>
<WorkingDir>/home/nct00/nct00002/examples/clustering_comparison/tmp.Ynl9AcAh8D</WorkingDir>
<Application>
<LibraryPath>/home/nct00/nct00002/examples/clustering_comparison</LibraryPath>

</Application>
</ComputeNode>

...
</Project>

Generated automatically by
enqueue_compss command
for MN4

COMPSs with Docker

DockerHub

Docker Compose
Docker Swarm

Docker Nodes

Application

runcompss_docker

COMPSs Image
App. Image

Application

• Keep as transparent for the user as possible

• Same as running a local COMPSs application (runcompss command)
• Deploy applications as a set of docker container

COMPSs@Singularity

• Execute applications from a container image in HPC cluster
• Can be also used in combination

with the cluster elasticity

Cluster Login Node

Cluster Compute Nodes

DockerHub App. Image

Application

1

3

Queue System

enqueue_compss
–container_image=..

2

www.bsc.es

dislib

dislib

• dislib: Collection of machine learning algorithms developed on top of
PyCOMPSs

• Unified interface, inspired in scikit-learn (fit-predict)
• Unified data acquisition methods and using

an independent distributed data
representation

• Parallelism transparent to the user –
PyCOMPSs parallelism hidden

• Open source, available to the community

dislib.bsc.es

dislib library

Comparison with DASK and MLib

• Gaussian mixtures (execution time) – 100 features, 50 components

27

100 million samples

500 million samples

Comparison with DASK and MLib

• K-means (execution time) –

28

1 billion samples with low
granularity (50 features and 50 clusters)

500 million samples with high
granularity (100 features and 500 clusters)

2 billion samples with high granularity
(100 features and 500 clusters)

Looking for objects in the sky with
dislib
• Gaia satellite data: Sample scientific application:

• Looking for open clusters in the sky with
DBSCAN clustering

• Subset of astrometric data from 2.5 million stars
• Total data is 109 stars

• Execution of 6,145 DBSCANs in parallel

dislib.bsc.es

Demo dislib

• Jupyter notebook

We are hiring!

THANK YOU!

www.bsc.es

support-compss@bsc.es

