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1. Motivation

Medicine: complex world of inter-connected entities

Technological advances —
astounding harvest of various molecular and clinical data

Proteomics 2016, 16, 741-758
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Integrative methods for analyzing big data in precision
medicine

Viadimir Gligorijevic, Noél Malod-Dognin and Natasa PrZulj



1. Motivation

Medicine: complex world of inter-connected entities

Protein-protein
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» Guided by empirical reductionism:

o  Striving to dissect a biological !
entity into its constituent parts \

o To better understand it 7 R S
- l‘ ® {.s. ; _"" R &* 3 :
> However, knowing parts is not ek R G, g s
. B\ e ,-;:--I':-?_.‘ VAR e >
enough: g B = PUSR
YL i g e R
0 0 L] B WTHED "Bt i Tl | W o

o 1859 — Darwin! saw biology as % G Sl - -&._%_QQT e o

a “tangled bank” with all its s S y il qBUsn e =

aspects interconnected N Lacal | o agta st

. _.n.f.‘:f.e:' el e _:“..' __-°-_‘1-‘ & 0 i, *"' :
o 1855 — Virchow?: all diseases
involve changes in normal cells

Gene expression Ontology data (GO, DO)

1. Darwin, C., On the origin of species, 1859 [Reprint, Modern Library, New York, N.Y., 1998.]
2. Virchow R., Arch. Pathol. Anat. u. Physiol. u. klin. Med. 8:3, 1855
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Medicine: complex world of inter-connected entities

Data growth about a cell: hemsotonss | CeHciiemfions
» Hit the wall of bio-complexity
» Cells:
>  are not just loosely coupled AT
arrangements of quasi-independent e “‘i; W g
molecules e £
-o & ¢;z F_w‘lm‘ by |
>  highly intricately and precisely Qs oo gnts
integrated networks of entities e B8/ X
and interactions within the cells @-_g__ﬁeéf' gty
and with the environment e Tane
4_"-‘-"’ e
»  Data types complement each other L ‘&'; oo 8

»  Seek joint modeling and mining T Geneexpress]/ \Ontology

N. Przulj and N. Malod-Dognin, “Network analytics in the age of Big Data,” Science 353:6295, 2016
C. R. Woese, A New Biology for a New Century, Microbiology and Molecular Biology Reviews 68(2):173-186, 2004
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Protein-protein
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» Replace the mostly reductionist
molecular perspective that dominated

the 20 century /
s Dlseases \

» New and holistic view of the living AT V“OT‘ RN S
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N. Przulj and N. Malod-Dognin, “Network analytics in the age of Big Data,” Science 353:6295, 2016
C. R. Woese, A New Biology for a New Century, Microbiology and Molecular Biology Reviews 68(2):173-186, 2004
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Protein-protein
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» Establishing a perspective and
framework not only for one problem,

but for biology and medicine in _ \ / -'

genel’a| Diseases ]
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N. Przulj and N. Malod-Dognin, “Network analytics in the age of Big Data,” Science 353:6295, 2016
C. R. Woese, A New Biology for a New Century, Microbiology and Molecular Biology Reviews 68(2):173-186, 2004
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Vision:

> Bridge this gap by developing a mathematically principled framework for
integration of networked data

» Marry biomedical problems and data with algorithms from:
» ML, such as NMTF
»  Mathematical non-linear optimization
>  Network science
»  Algebraic topology...
»  High-performance computing

» Propose modelling & computational advances that will link the medicine’s:
»  reductionist past with its holistic future

> Enable

»  displacement of the dominant molecular representation of biology
> by a new, integrative paradigm that is deeper, more comprehensive and inspiring

€2M ERC Consolidator Grant for 2018-2023

Title: “Integrated Connectedness for a New Representation of Biology”
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Medicine: complex world of inter-connected entities

Computational challenges

» Need new tools to mine complex data systems v v Y
CAATT
» Why?
e Analysing sequences: “computationally easy” - still lacking - GTAATICA-
e Analysing interconnected heterogeneous data: “computationally hard”

» Sophisticated methods carefully tuned to extract new knowledge from particular data
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Computational challenges
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Mine the Medical World of Inter-Connected Entities

I. Molecular Networks

The number of nodes

The number of links

Links of each node: degree
Distribution of links (degrees)
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Mine the Medical World of Inter-Connected Entities

ERC StG: 278212 (2012-2017): "Biological Graphlets
Network Topology Complements Genome as “Legos of Networks”
a Source of Biological Information”

L1 AT DA

AN AN

P41 At ALa¥YYYdoa

o

N. Przulj, “Biological Network Comparison Using Graphlet Degree Distribution,” Proceedings of the 2006 European Conference on Computational
Biology, ECCB '06, Eilat, Israel, January 21-24, 2007, acceptance rate 18%. Bioinformatics, volume 23, pages e177-e183, 2007
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Mine the Medical World of Inter-Connected Entities

90% similar wiring — significantly enriched:

Biological function
Protein complexes
Sub-cellular localization
Tissue expression
Disease

Ll

T. Milenkovic and N. Przulj, “Uncovering Biological Network Function via Graphlet Degree Signatures”, Cancer Informatics, vol. 4, pg.
257-273, 2008 (Highly accessed)
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N @ Cancer research:

’ “ "'\‘OI ' A — New proteins for melanin production
N

3 '®'IL

NN @‘ © — Same cancer type: more similar

o @ =) — Far away in the network
© e‘@.@ S @_@ ¢

F=% f_"\l {
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T. Milenkovi¢, V. Memisevic, A. K. Ganesan, and N. Przulj, J. Roy. Soc. Interface, 7(44):423-437, 2010
H. Ho, T. Milenkovi¢, V. Memisevic, J. Aruri, N. Przulj, and A. K. Ganesan, BMC Systems Biology, 4:84, 2010 (Highly accessed)
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D. Davis, O. N. Yaveroglou, N. Malod-Dognin, A. Stojmirovic, N. Przulj, “Topology-Function Conservation in Protein-Protein Interaction Networks,” Bioinformatics
31(10):1632-1639, 2015. IF=7.3
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Network Alignment

Isorank: GRAAL:
116 nodes 267 nodes
261 edges 900 edges
MI-GRAAL.:
1,858 nodes
3,467 edges

- o0oo0<=Zz2Z2

. Malod-Dognin & N. Przulj, L-GRAAL, Bioinformatics, doi: 10.1093/bioinformatics/btv130, 2015

. Malod-Dognin & N. Przulj, GR-ALIGN, Bioinformatics, doi:10.1093/bioinformatics/btu020, 2014

. Memisevic & N. Przulj, C-GRAAL, Integrative Biology, doi:10.1039/c2ib00140c, 2012

. Kuchaiev & N. Przulj, MI-GRAAL, Bioinformatics, 27(10): 1390-6, 2011

. Kuchaiev, T. Milenkovic, V. Memisevic, W. Hayes, & N. PrZzulj, J. Royal Society Interface, 7:1341-1354, 2010
. Milenkovic, W.L. Wong, W. Hayes, & N. Przulj, Cancer Informatics, 9:121-37, June 30, 2010 (Highly visible)

L-GRAAL :
5,726 nodes
16,084 edges
Yeast: 98% proteins
21% interactions
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Alighment of PPl Networks — Ulign

o Many methOdS #Aligned Proteins (NC) = NATALIE
' — MAGNA
icti #Aligned Interacti Shared Cellular

» All heuristic #Aligned Interactions \ Components (60-CO MODULEALIGN
* No gold standard e

. SPINAL-M1
 Questions: fAligmle\ld LnterI?C(Ticoer)s \ Shared Molecular = OPTNET

] ; . arger Networl ' i - — ] -
o Which aligner for which data? ’ Functions (GO-MF) L-GRAAL
o0 Which scoring scheme for evaluation?
o Coverage: biological and topological?
: ; Interaction Pattern ; .
o Contribution of topology vs sequence? Similarity (53) Shared Biological
Largest Connected Shared Pathways (KP)

Component (LCC)

« Map biologically and topologically different network regions
« Each covers only about 50% of the proteins of the larger network

« Together — map entire networks — Ulign
= Biologically coherent

Why?
- Existing annotations ill-suited?
- Methodological limitations?

— Combine topology and sequence information

 The most topologically coherent — using topology only
 The most biologically coherent — using sequence only

N. Malod-Dognin, K. Ban and N. Przulj, Unified Alignment of Protein-Protein Interaction Networks, Scientific Reports- Nature, 7:953, 2017
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A. Sarajlic, N. Malod-Dognin, O. N. Yaveroglou, and N. Przulj, “Graphlet-based Characterization of Directed Networks,” Scientific Reports - Nature, 6:35098, 2016
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N. Przulj, “Biological Network Comparison Using Graphlet Degree l
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INSIGHTS | PERSPECTIVES

Graphlets
“Legos of Networks”

A O

Network analytics in the age of Big Data

How can we holistically mine big data?

@ﬁa Przulj and Noél Malod-n@

e live in a complex world of inter-
connected entities. In all areas of
human endeavor, from biology to
medicine, economics, and climate
science, we are flooded with large-
scale data sets. They describe in-
tricate real-world systems from different and
complementary viewpoints, with entities be-
ing modeled as nodes and their connections
as edges, comprising large networks. This is

SCIENCE sciencemag.org

Network structures

The four networks shown have exactly the same size
(the same number of nodes and edges), and each
node within each network has the same degree (the
number of interactions with other nodes), but each
network canis of very different structure.

Four triangles Three squares

SO T

into RNAs and translated into proteins, which
adopt various three-dimensional structures
to carry out particular cellular functions. Mo-
lecular interactions are captured by different
high-throughput biotechnologies and mod-
eled with different types of networks. Indi-
vidual analyses of molecular networks have
revealed that molecules involved in similar
functions tend to group together in a network
and are similarly wired (13), leading to better
understanding of gene functions (6) and mo-
lecular organization of the cell (7) and to im-

s JULY 2016 -+ VOL 353 ISSUE 6295__
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A global genetic interaction network maps a wiring diagram of cellular function

.

cience 23 Sep 2016:
Vol. 353, Issue 6306, aafl420
- 10.1126/science.aaf
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Graphlets
“Legos of Networks”

A DY
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Case law L Zhang, Y Han, Y Yang, M Song... - IEEE Transactions on ..., 2013 - ieeexplore.ieee.org L Zhang, W Bian, M Song, D Tao, X Liu - International Conference on ..., 2011 - Springer

My library Abstract: Recognizing aerial image categories is useful for scene annotation and Abstract Scene classification plays an important role in multimedia information retrieval.

surveillance. Local features have been demonstrated to be robust to image transformations,

. - . ; Since local features are robust to image transformation, they have been used extensively for
including occlusions and clutters. However, the geometric property of an aerial image (ie,
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Multi-disciplinary, data-fusion methodology

PNMTF = Personalize Treatment

Chemical similarity L,

Motivation:

= Captures all systems-level
= Captures how data relate
= Mechanistic explanations

— — = \ ' _
I\:,)12 ~ G1 S12 GZ

D13 ~ G1 813 G3T Metabolic interactions I_(i)
D23 ~ G2 823 G3T Genetic interactions L(i)

Protein-protein interactions I_(i)

MIiN{Y 1<igep [ [IWj; o(Dy; — G;S;GII? + a [|S;][*+ a; tr(G'L;G)) + a; tr(G;'L;G))] : G;,S;; 2 0}

a ||S;||? maintain sparsity of S;, a; tr(G,"LG;) and a; tr(G;"L;G;) adding prior knowledge (penalties),
G;, S; 2 0 is needed for cluster interpretation 81
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Multi-disciplinary, data-fusion methodology

PNMTF = Personalize Treatment

Chemical similarity L,

Motivation:

= Captures all systems-level
= Captures how data relate
= Mechanistic explanations

Next-Gen Sequencing
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a ||S;||? maintain sparsity of S;, a; tr(G,"LG;) and a; tr(G;"L;G;) adding prior knowledge (penalties),
G;, S; 2 0 is needed for cluster interpretation 82
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Patient-Specific Data Fusion = Personalized Treatment

Co-clustering: patients, genes and drugs

- BioGRID, KEGG: DrugBank: DrugBank:
Data: TCGA | | pp1. GI, MI DTI SMILES

353 serous ovarian cancer patients from TCGA.:
1. Patient stratification

2. Driver gene prediction

3. Drug repurposing

V. Gligorijevic, N. Malod-Dognin and N. Przulj, Patient-specific data fusion for cancer stratification and personalized treatment, PSB, 2016
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Patient-Specific Data Fusion = Personalized Treatment

Co-clustering: patients, genes and drugs

7 R, =G Hy, G,
5, Ry3 = G, Hyy Gg'
k,« n; — patient clusters
k,« n, = gene clusters

Ky « ng - drug clusters
G,, G, and G; are cluster
indicator matrices

- BioGRID, KEGG: DrugBank: DrugBank:
Data: TCGA | | pp1. GI, MI DTI SMILES

Ovarian cancer patients:

1. Patient stratification - CIA
2. Driver gene prediction > Co
3. Drug repurpssing - Rog

Ls
mn J= min || Riz— Glng@]% - H@@‘]%G% 15 +
G,>0,1<i<3 G,>0,1<i<3
tr(G3 LaGa) + tr(GLLsG3)]

V. Gligorijevic, N. Malod-Dognin and N. Przulj, Patient-specific data fusion for cancer stratification and personalized treatment, PSB, 2016
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Mine the Medical World of Inter-Connected Entities

Patient-Specific Data Fusion = Personalized Treatment

R,=G; Hyp GyF

Some results:
= s T
1 | Ry3 = G, Hys G
—Clust 1 (131, 50) k,« n; — patient clusters
> 0.8} —Clust 2(53, 30) | k.« n., — gene clusters
e —Clust 3 (169, 86) ot Ny = 4
2 Ky « ng - drug clusters
2 0.6
O G,, G, and G; are cluster
o indicator matrices
S04 . .
% Ovarian cancer patients:
D 0.2r -
1. >C1)
0 . . 2. Driver gene prediction > Co
0 50 100 3. Drug repurpssing > Ros

Time (Months)

Kaplan-Meier survival curves for 3 patient
groups found by GNMTF (log-rank p-val = 5.3 x 10-%)

mn J= min || Riz— Glng@]% + || @@—]ggGé 15 +
G,>0,1<i<3 G,>0,1<i<3

tr(G3 LaGa) + tr(GLLsG3)]

V. Gligorijevic, N. Malod-Dognin and N. Przulj, Patient-specific data fusion for cancer stratification and personalized treatment, PSB, 2016
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Mine the Medical World of Inter-Connected Entities

Patient-Specific Data Fusion = Personalized Treatment

Some results: ~40% of our 809 predicted driver genes in CCGD, Census, or IntOGen

sw drive Known drivers Score DB
ADANMS2 (BMPR2 ] 1.000 = < TGFs, cell proliferation & progression
REGIP CLASP?2 1.000 - < proliferation, migration, anti-apoptosis; prognosis markers
PCDHA?2 CHDA 1.000 -
NCR1 BMPR2 1.000 .
USPL1 CLASP2 1.000 -
GDPD3 DDX5 1.000 -
LECT1 CLASP2 1.000 CCGD
1125 CDK12, CCARI1 0.975 -
BAK1 ATRX, TFDP1, NDRCG1  0.967 . . . .
MOGAT?2 ATRX, TFDP1, NDRG1  0.967 - Ovarian cancer patients:
CHAF1A ATRX, TFDP1, NDRG1 0.967 CCGD A
PITX2 ATRX, TFDP1, NDRG1  0.967 — 1. Patient stratification = C;
SIN3B ATRX, TFDP1, NDRG1  0.967 - - e
RPL30 ATRX, TFDP1, NDRG1  0.967 - 2. Driver gene p_red =
GRWDI1 ATRX, TFDP1, NDRGI  0.967 - 3. Drug repurpesing - Ro3
SNAT1 ATRX, TFDP1, NDRG1 0.967 CCGD
RBMXP4 ATRX, TFDP1, NDRCG1  0.967 .
CPNE7 ATRX, TFDP1, NDRG1  0.967 -
HIPK3 ATRX, TFDP1, NDRG1 0.967 CCGD
EPOR ATRX, TFDP1, NDRG1 0.967 CCGD

mn J= min || Riz— Gl]—IlQ@’F H@@—] 3G |
G,;>0,1<i<3 G,>0,1<i<3

H(GELAGo) + (G LG

V. Gligorijevic, N. Malod-Dognin and N. Przulj, Patient-specific data fusion for cancer stratification and personalized treatment, PSB, 2016
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Mine the Medical World of Inter-Connected Entities

Patient-Specific Data Fusion = Personalized Treatment

Some results: s-fold cross validation, average AUC: ROC and PR 1 -

e | | | | | | " |dauc roc =i L = e Y,
091 {EBAuC PR s BMBE K DT ¢ o
0.8+ | : :_¢

L, L;
0.7+
0.6
0.5 Ovarian cancer patients:
0.4 1. Patient stratification > C1_
03 2. Driver gene predicti Cs
Q \)}L@ @g 0‘2’6 @g 3. Drug repu Sing
SIS S <) N
&\x Q&\

S
Q
mn J= min || Riz— Glng@]% + || @@‘]zg(}é 15 +
G,>0,1<i<3 G,>0,1<i<3
tr(G3 LaGa) + tr(GLLsG3)]

V. Gligorijevic, N. Malod-Dognin and N. Przulj, Patient-specific data fusion for cancer stratification and personalized treatment, PSB, 2016
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Mine the Medical World of Inter-Connected Entities

Patient-Specific Data Fusion = Personalized Treatment

Some results: 37% of our ~225K predicted DTIs confirmed in MATADOR or CTD

Gene Drug Score  Clusters DB

KIT ATP 0.873 1,2, 3 —

GABRQ Adinazolam 0.808 1 M

GABRQ Fludiazepam 0.808 1 M

GABRQ Cinolazepam 0.809 1 M

GABRQ Clotiazepam 0.809 1 M

HTR2A Dopamine 0.809 1.3 -, M

GRIN3A 0.801 1, 2 -

CACNAR2DI /erapamil 0.761 1,3 M

PDGFRB ATP 0.724 1,2 - . .

KDR ATP 0.724 1,3 C Ovarian cancer patients:
HTR1A Mirtazapine 0.720 1,2 oM R
GABRAG Adinazolam 0.688 1 M : e ; .
GABRAG Fludiazepam 0.688 1 M 1. Pa_tlent Stratlflcatl.or.l 2 Cl"
GABRAG Cinolazepam 0.688 1 M 2. Driver gene pred| CQ
GABRAG Clotiazepam 0.688 1 M 3. Drug repu 5SIng
GABRA4 Adinazolam 0.687 1,3 M

GABRA4 Fludiazepam 0.687 1,3 M

GABRA4 Cinolazepam 0.687 1, 3 M

GABRA4 Clotiazepam 0.687 1,3 M

CACNALD Magnesium Sulfate 0.676 1, 2,3

/
mn J= min || Riz— Gl].‘Im@’% + | @@—]ggGé 15 +

G,>0,1<i<3 G,>0,1<i<3 ‘

tr(G3 LaGa) + tr(GLLsG3)]

V. Gligorijevic, N. Malod-Dognin and N. Przulj, Patient-specific data fusion for cancer stratification and personalized treatment, PSB, 2016
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Mine the Medical World of Inter-Connected Entities

Patient-Specific Data Fusion - Personalized Treatment

DNA

elements
SMPs, .
Expressions, /
Methylations,
Copy numbers [EUEts
Clinical Chemical
profile Patients - similarities
similarities
Treatments,

Adverse effects



2. Novel Methods

Mine the Medical World of Inter-Connected Entities

Patient-Specific Data Fusion - Personalized Treatment

DNA
elements
Germline mutations, .
Expressions, /
Methylation
STACETS Targets
Clinical vaccine Chemical
profile Patients 1 compounds similarities
similarities
Treatments,

Adverse effects

O Systems vaccinology
o  With Dr. Nuria lIzquierdo, IGTP IrsiCaixa, Badalona
o Scientific Advisory Board of the Helmholtz Centre for Infection Research (HZI / Braunschweig, Germany)



2. Novel Methods

Mine the Medical World of Inter-Connected Entities

Patient-Specific Data Fusion - Personalized Treatment

DNA
elements
Germline mutations, .
Expressions, /
Methylations Targets
Clinical vaccine Chemical
profile Patients 1 compounds similarities
similarities
Treatments,
Adverse effects
Obstacles:

1. Different NP-hard continuous optimization problem:

» propose objective function,

e optimization solver — prove convergence and correctness
2. Optimization is slow — HPC




2. Novel Methods

Mine the Medical World of Inter-Connected Entities

Disease Classification from Systems-Level Molecular Data

Method
— ppis Some Results:
; \ — 14 disease-disease associations currently not
Couexpression present in DO:
p \Méftabolic net > evidence for their relationships through
> ) _ comorbidity data and literature curation
— \Cell/signalling
%)j”etic inter. — Gl the most important predictor
_ of a link between diseases, despite small
Drug Inter.
notation Rus ®4 .. )
) Ris Drug-ta et/ }\ — Omission of any one of the included data
(GO term | (CDug ) sources reduces prediction quality
\ / _ / » Importance of systems-level data fusion

4 Objects: Genes, GO terms, DO terms, Drugs ) 0
Constraints: 6, (network topology, ontology relations) — DO M disease class — 80% DO from only

Relation matrices: R;; network data

M. Zitnik, V. Janjic, C. Larminie , B. Zupan, and N. Przulj, Discovering disease-disease associations by fusing systems-level molecular
data, Scientific Reports - Nature, 3:3202, 2013
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Mine the Medical World of Inter-Connected Entities

Disease Classification from Systems-Level Molecular Data

e Co-clustering GO terms, DO terms, Genes and Drugs under pairwise constraints:

( 0 Ri2 Riz Ryg G)(lt') 0 0 0 0 Sy Siz Sia Gy 0 0 0
. R, 0 0 0 0 O, 0 0 O . So; 0 0 0 0 Gz O 0
. = | - Jutput: S = i G=| _ )
Input: R RL 0 0 0 © 0 0 ©; 0 ! S31y 0 0 0 0 0 Gz 0
LR}; 0 0 0 J 0o 0 0 ®4J [841 0o 0 0 J L 0 0 0 G4J

» Minimizing Frobenious distance between Ri; and G. SUGJT, for all relation matrices:

» | ={Genes}, Jj ={DO terms, GO terms, Drugs}
= G,is a cluster indicator matrix for data type i
(genes, DO terms, GO terms and Drugs) ( expression
: . DO
with additional penalty terms: ©: \M tabo"c net
D »
5 ( J gnalling
min.J = min | | R — GSGT ||% + Zh‘(GT@(t)G) / \\ \ - ]
G=0 G=0 =1 @ term | ‘ \ netic inter.
- — Ry T
> Interested in G, (DO terms) _Gene: disease Drug inter.
= used for cluster assignment and inferring new ﬂ Gene.afinotation R
: g ( Ras Drug-ta 3
disease associations from clusters N
| GO term j Drug |
\ / ,,/

M. Zitnik, V. Janjic, C. Larminie , B. Zupan, and N. Przulj, Discovering disease-disease assouatmns by fusing systems-level molecular
data, Scientific Reports - Nature, 3:3202, 2013
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Gene Ontology from Systems-Level Molecular Data

;
» Outperform Dutkowski et al. [2013] 60 terms (G
» 96% of GO reconstructed! )
» Correct assignment of GO terms to genes (3-fold cross-validation, AUC=0.874=+0.002) =
» Graphlets improve results e SRS
> Validated biologically by Bonne’s yeast Genetic Interaction profile data, Science, 2016 Er—T W) |}
B B - - Yy Genes (G}
— Optimization problem which minimizes ||R, - G;S;,G," ||% Co-txnework
under the guidance of pairwise constraints veastNet = '
(connectivity and GDV similarity) between genes in networks: o
1 ( 4
GlZl%)l‘l(l}lQZO J = Glzlbl‘l(l}l220 H ng — G1512G2 H%—' (Zl ?LI'(Gl Ll )Gl)) -+ (Zl ?LJ'(GI A(l )Gl)) + h(Gz LQGQJ

using topology of molecular networks as constraints (penalty terms) in this optimization problem:
— L,® is Laplacian of adjacency matrix of a molecular network i=1,2,3,4:
L, =D - Al, D' is diagonal matrix of degrees (row summation of A'), Al is adjacency matrix

— A,® are Laplacians of GDV similarity matrices over all genes for each molecular network i:
A, =Dl - 60, DI is diagonal matrix of row summation of 6, 6 is binary GDV similarity matrix
(containing only significantly similar gene/protein pairs)

— L, is Laplacian of

V. Gligorijevic, V. Janjic and N. Przulj, Integration of molecular network data reconstructs GO, Bioinformatics, Vol. 30 ECCB 2014, i594-i600
(14% acceptance rate), 2014
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Multiple Network Alignment: Fuse

H.Sapiens

R12

D.Melanogaster

Ry, = G;S1,G,
Rz = G,5,5G'5
Ry = G;51,G"y
Ris = G;515G's
M.Musculus

Algorithm 1 Approximate maximum weight k-partite matching.

Input G = (5, Vi, E.W)
fori={2...., k} do
Find maximum weight bipartite matching Fy ; of G[V}.V/]

Construct Gy;, the merge of V; and V; from G along F ;
Set G = Gy;. and relabel Vy; as V,

C = {0}

for each merged node « in V; do
Cluster €, is the set of nodes that are merged into «
AddC,toC

Output C

We use a block-based representation of relation (R) and Laplacian (L)
matrices and matrix factors (S and G) for our 5 PPI networks as follows:

0 R]g R|5 L] 0 0
RL, 0 ... R 0 L ... 0
R=| . . .|, L=
RL R .00 0 0 .. Ls
0 Sz ... Sis G 0 0
SL, 0 ... Sy 0 Gy ... 0
S = G=
S, SL ... 0 0 0 ... Gs

To simultaneously factorize all relation matrices, R;; ~ G,-S,-,-G?, 0<
i, j <35, under the constraints of PPI networks, we minimize the following
objective function:

. P 2 ~ a
min/ = [ || R—GSG’ || +yTr(G'LG)] (2)

G>0 ‘ ’
where Tr denotes the trace of a matrix and 7y is a regularization parameter
which balances the influence of network topologies in reconstruction of the
relation matrix. The second term of equation 2 is the penalization term.

V. Gligorijevic, N. Malod-Dognin and N. Przulj, Fuse: Multiple network alignment via data fusion, Bioinformatics, 32(8):1195-203, 2016. IF=7.3
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Multiple Network Alignment: Fuse

H.Sapiens
Ri> /2 _Ris
D.Melanogaster y S.Cerevisiae
.\t \ /| \
«— J A‘
N\ e
..:._. R ___________________

R;; = G;5,,G";,
YE ; " Ryi3 = G;S3G’;
. -] R14 = Glsl4GT4

= -y Ris = G;S15G's
M.Musculus

: : : = = =Sequence, BP :
rrrrr P e NMTF, BP §=0.7) |-
1 : : 3 = = = Sequence, MF :
""" T NMITF, MF =07 [

o
*

~N @
o
T

(o))
o

w A
o O

% of functionally consistent pairs
[4)}
o

N
o

0.5 1.0 1.5 2.0 25 3.0 3.5
# top scoring pairs of annotated proteins (in millions)

Fig. 2. Functional consistency of NMTF associations. For both NMTF
associations and sequence similarity of protein pairs, we plot the cumulative
number of protein pairs with both proteins annotated (x-axis) against the
percentages of them sharing GO terms (y-axis). Biological process (BP) and
molecular function (MF) annotations are considered separately.

V. Gligorijevic, N. Malod-Dognin and N. Przulj, Fuse: Multiple network alignment via data fusion, Bioinformatics, 32(8):1195-203, 2016. IF=7.3



Overview

Medicine: complex world of inter-connected entities

1. Motivation

2. New Methods — Examples: mine inter-connected data

l. Single layer of omics data: Molecular networks — function, disease

li.  Multiple layers of heterogeneous data:

. Patient-centered data integration — Precision medicine

3. Vision



3. Vision

Biomedical Data: complex system of heterogeneous interacting entities

Large

Heterogeneous

Highly dimensional

Growing Complexity

Noisy

Dynamic

Different time and space scales

VYV VYV VYV

e \World Economic Forum in Davos 2016:
o “Big data” potential to transform medicine
o Make it more effective due to increased life expectancy and exposure to environmental risks

e Nature Insight and Outlook of 2015 and 2016

e | was awarded 2014 BCS Roger Needham Award in recognition of “the potential my work
and research have to revolutionize health and pharmaceutics”



3. Vision

Biomedical Data: complex system of heterogeneous interacting entities

» Large
»  Heterogeneous
»  Highly dimensional » Each type: limited, but complementary information
»  Growing Complexity o . o .
>  Noisy » Seek principled, joint organization and mining
. within the same framework
»  Dynamic
»  Different time and space scales

e \World Economic Forum in Davos 2016:
o “Big data” potential to transform medicine
o Make it more effective due to increased life expectancy and exposure to environmental risks

e Nature Insight and Outlook of 2015 and 2016

e | was awarded 2014 BCS Roger Needham Award in recognition of “the potential my work
and research have to revolutionize health and pharmaceutics”

€2M ERC Consolidator Grant for 2018-2023

Title: “Integrated Connectedness for a New Representation of Biology”




3. Vision

Holistically Mine All Available Data

— Paradigm shifts

1. Conceptual 2. Methodological

N. Przulj and N. Malod-Dognin, “Network analytics in the age of Big Data,” Science 353:6295, 2016



3. Vision

Holistically Mine All Available Data

— Paradigm shifts

1. Conceptual

Do not analyze single data type in isolation of others (e.g., sequence align.)
» Analyze all types of data within a single framework

» New, bottom-up, data-driven biological concepts

e Elucidate that a cell may be governed by yet undiscovered principles of life
e Point to ways to re-think biology and approaches to medicine

N. Przulj and N. Malod-Dognin, “Network analytics in the age of Big Data,” Science 353:6295, 2016 128



3. Vision

Holistically Mine All Available Data

— Paradigm shifts

1. Conceptual

Do not analyze single data type in isolation of others (e.g., sequence align.)
e Introduce a concept of an “Integrated Cell (iCell)”

.
. 3
N ¥ .
g oot
%& %"
A .
| o’ 3
AL "
e o‘i?{m :‘:, =t %%
o POt N ;.'-,:‘.’: o
) '.“w RN

4 ";

PPI(A,), COEX (A) & GI (A)

expression

.
» , WPl
-
gy N
.
-
L o
..

&3 ¢

min Y ||A=G-S;-G"|
G=0,8

=10, i=1

Noél Malod-Dognin, Julia Petschnigg, Sam F. L. Windels, Janez Povh, Harry Hemmingway, Robin Ketteler and Natasa Przulj,
“iCell: integrated cells uncover new cancer genes,” Nature Communications, 2019



3. Vision

Holistically Mine All Availab

— Paradigm shifts

e Data

2. Methodological

0Ltz t3

T ¥k

t1 t.z."t_?,"

RNA-Seq: Time-dependent

(1)
A;

(2]
A;

Chemical similarities MRl immages data_

. 2

Drug side-effects  Ayl?

A

R:,
therapy

predictions

R:;
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; === P Al} o
M‘. 1 Protein-protein interactions

. 2
2 :_%: —— Al?(]enem-em"essinn
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N. Przulj and N. Malod-Dognin, “Network analytics in the age of Big Data,” Science 353:6295, 2016



3. Vision

Holistically Mine All Available Data

— Paradigm shifts

2. Methodological

t tz t3

Chemical similarities

A e A

, 'ﬁ'\aﬂl.—
(2]
A;

MRI immages data _
Drug side-effects  Ayl?

A

R:,
therapy

predictions

 Mathematical formalisms A -
» Capture multi-scale organization SN v R, ~ 656!
e Dynamics, stochasticity of the data,... |ase rmedependent 322 - 2;2;;%
- A{i]" GlsmG‘g AM-;:S .Ai}Protcm-o'atcininrcracrrcns ]
* E.g., multiplex networks, A%u G:S?G] B> A cenecooresin
hypergraphs, simplicial complexes ... - gziigr - __'—"'-Il-l---' S zisltt by uh_,;wj
. Algorlthms to compute and extract mformatlon from those formallsms

H, 75 Hiepy  Higs H o ;ff/ \ Hr p~ Hs o=y
- ! / ha' 'f

@ ‘ ‘
g o= ! _/f;

IAAA%A/&A

B B

AAAAML

T. Gaudelet, N. Malod- Dognln and N PI’ZU|], ngher ord—er molecular organisation as a source of biological function,” Bioinformatics, ECCB’18
N. Malod-Dognin and N. Przulj, “Functional geometry of protein-protein interaction networks,” arXiv:1804.04428, 2018

Noél Malod-Dognin, Julia Petschnigg, Sam F. L. Windels, Janez Povh, Harry Hemmingway, Robin Ketteler and Natasa Przulj, “iCell:
integrated cells uncover new cancer genes,” Nature Communications, 2019



3. Vision

Holistically Mine All Availab

— Paradigm shifts

2. Methodological

« Mathematical formalisms
» Capture multi-scale organization
* Dynamics, stochasticity of the data,...

e E.g., multiplex networks,
hypergraphs, simplicial complexes ...

t t2 t3 AE” Chemical smilaritlc_s MRl immages data_
3L i . 2
A Drug side-effects  Ayl? :
_3_ - A t}]‘i—'-
2_.4‘_-_
R:,
therapy

T ¥k

t1 t.z."t_?,"

RNA-Seq: Time-dependent

-
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- " A"

b7y » p

L &
h - b
A o

predictions

' L R; ~ GlslzG‘g
Rl3 - G'_Sl3G-£
Rza -~ (32523(--’-3r

A}~ G,SVG]
A‘f’n— GJS'E’GI
AY ~ G,SPG]
AY~ G,SWG]

e 2
i - Al?(]ene co-expression
e
: Achrc:c nteractions
J—— ’ 'Ad}
m 1 Metabolic interactions

- ) s
Al Protein-protein interactions|| £ TS

« Algorithms to compute and extract information from those formalisms

How: e.g.

» Utilize dependencies in local network topology (orbits) — data set dependent
* Uncover latent low-dimensional structure of data
o Exploit structure for developing efficient toolsets for particular data

N. Przulj and N. Malod-Dognin, “Network analytics in the age of Big Data,” Science 353:6295, 2016



3. Vision

Holistically Mine All Availab

— Paradigm shifts

2. Methodological

« Mathematical formalisms
» Capture multi-scale organization
* Dynamics, stochasticity of the data,...

e E.g., multiplex networks,
hypergraphs, simplicial complexes ...

e Data

0Ltz t3

T ¥k

t1 t.z."t_?,"

RNA-Seq: Time-dependent

Chemical similarities MRl immages data_

A e A

A Drug side-effects  Ayl?
3 .

A

R:,
therapy

. L R;; ~ GISIZG‘E

R:; ~ G,5,5G]| ?

Rza -~ (32523(--’-3r

A}~ G,SVG]
A‘f’n— GJS'E’GI
AY ~ G,SPG]
AY~ G,SWG]

2
Al?(]ene co-expression
e
Achrc:c nteractions

- )
Al Metabolic interactions

-

- ) s
Al Protein-protein interactions|| £ TS

150
amendex  Cancer heterogeneity

o Algorithms to compute and extract information from those formalisms

Computational issues remain to be addressed, arising from intractability:
« large sizes, complexity, heterogeneity, noisiness, and
« different time and space scales of the data
“Embedded” data scientists: problem-specific heuristic methods, HPC

N. Przulj and N. Malod-Dognin, “Network analytics in the age of Big Data,” Science 353:6295, 2016



3. Vision

Holistically Mine All Available Data

— Paradigm shifts

Guided by Needs of Biomedical Collaborators and Industry
E.g.:

Cancer

Rare genetic diseases

Viral medicines

JnJ
GSK

Medium, start-ups, ...
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