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Divergence DA-CS

Source: Big Data and Extreme-Scale Computing, BDEC 
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Divergence at architecture level

Source: “Creating synergies across HPC & Big Data platforms”, BDVA-ETP4HPC White Paper
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Historical differences BD-HPC

Typical workload Design principles

Big Data Data-intensive applications
Most time is used for I/O and data 
management

Optimized for cost
Less priority for performance

HPC Compute-intensive applications
Most time is used for computing

Optimized for performance
Less priority for cost
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Interest for convergence
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BDVA (~200) members include large 
industries, SMEs, research 

organisations and data users and 
providers to support the development 
and deployment of the EU Big Data 

Value Public-Private Partnership with 
the European Commission

BDVA focuses its activities on updating the multi-annual 
roadmap and on providing regular advice to enable the European 
Commission to prepare, draft and adopt the periodic Work 
Programmes, as well as on delivering Data Innovation 
Recommendations, developing Big Data Value 
Ecosystem, guiding Standards, and, facilitating Know-how 
exchange.
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EuroHPC Joint Undertaking
https://eurohpc-ju.europa.eu

https://eurohpc-ju.europa.eu/documents/EuroHPC-Work-Plan-2019.pdf
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CABAHLA-CM: Convergence BD-HPC: 
From sensors to applications

• Project funded by the Community of Madrid, grants for R&D 
activities between research groups in technology and biomedicine
(2019-2022)

• 4 groups:
– ArTeCS, Universidad Complutense de Madrid

– ARCOS, Universidad Carlos III de Madrid

– SciTrack, Centro de Investigaciones Energéticas, Medioambientales y 
Tecnológicas

– OEG, Universidad Politécnica de Madrid

• Goal: Improve the integration of HPC and Big Data paradigms
– Computing and data intensive platform

– Two use cases: capturing and modeling sensor data for the prediction of solar 
radiation with high spatio temporal resolution and processing massive data in 
brain's medical images
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Traditional Big Data Extreme Data Analytics

Enterprise IT HPC

Data-intensive workloads

[Example] Inferring new 
insights from big data-sets 
e.g. pattern recognition 
across suppliers, consumers, 
etc for data-driven insights 
and innovation

‘Regular’ workloads

[Example] Running the 
enterprise – HR, Legal, 
Payroll, finance, etc.

Compute-intensive 
workloads

[Example] Modelling and 
simulating focusing on 
interaction amongst parts of 
a system and the system as a 
whole e.g. product design

Compute- and Data 
intensive workloads:
[Example] Reshaping 
healthcare through advanced 
analytics and artificial 
intelligence – leading to 
predictive and personalized 
medicine

Source: Subgroup HPC-BD BDVA
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Applications/Use cases

13

Source: Subgroup HPC-BD BDVA
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14

HPC, Big Data and Deep Learning

Source: “Creating synergies across HPC & Big Data platforms”, BDVA-ETP4HPC White Paper
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HPC at storage level

HPC application

POSIX file system • Random reads and 
writes to file

• Folder/file hierarchies
• Permissions
• Atomic file rename
• Multi-user protection
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POSIX

Random reads and writes to file
Folder/file hierarchies

Permissions
Atomic file rename

Multi-user protection
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POSIX

Random reads and writes to file
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POSIX

Random reads and writes to file Objects
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HPC at storage level

HPC app

Object-based storage system
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HPC and Big Data

HPC app

Object-based storage 
system

Big Data app
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HPC and Big Data

HPC app

Converged object-based storage system

K/V 
store DB

Big Data app
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Actual storage stack
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Object-oriented primitives

• Object access: random object read, object size
• Object manipulation: random object write, truncate
• Object administration: create object, delete object

• These operations are similar to those permitted by the POSIX-IO API 
on a single file

• Directory-level operations do not have their object-based storage 
counterpart (flat nature of these kinds of systems):
– Low number of them
– Emulated using the scan operation (far from optimized, but compensated 

by the gains permitted by using a flat namespace and simpler semantics)
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Representative set of HPC/BD Apps
Plataform Application Usage Total 

reads
Total 

writes
R/W ratio Profile

HPC/MPI

mpiBLAST Protein 
docking

27.7 GB 12.8 MB 2.2*10^3 Read-intensive

MOM Oceanic 
model

19.5 GB 3.2 GB 6.09 Read-intensive

ECOHAM Sediment 
propagation

67.4 GB 71.2 GB 0.94 Balanced

Ray Tracing Video 
processing

0.4 GB 9.7 GB 4.1*10^-2 Write-intensive

Cloud/Spark

Sort Text 
processing

5.8 GB 5.8 GB 1.00 Balanced

Connected 
Component

Graph 
processing

13.1 GB 71.2 MB 1.8*10^2 Read-intensive

Grep Text 
processing

55.8 GB 863.8 MB 66.14 Read-intensive

Decision 
Tree

Machine 
Learning

59.1 GB 4.7 GB 12.57 Read-intensive

Tokenizer Text 
processing

55.8 GB 235.7 GB 0.23 Write-intensive

Pierre Matri, Yevhen Alforov, Álvaro Brandón, María S. Pérez et al. Mission possible: Unify HPC and Big Data stacks 
towards application-defined blobs at the storage layer. Future Generation Computer Systems, In press.
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Ops distribution
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Directory operations (BD App)

Operation Action Oper. 
count

mkdir Create directory 43

rmdir Remove directory 43

opendir
(Input data 
directory)

Open/List directory 5

opendir
(other

directories)

Open/List directory 0

Original operation Rewritten operation

create(/foo/bar) create(/foo__bar)

open(/foo/bar) open(/foo__bar)

read(fd) read(bd)

write(fd) write(bd)

mkdir(/foo) -----

opendir(/foo)
scan(/), return all files 

matching foo__*

rmdir(/foo) scan(/), remove all
files matching foo__*
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Influence of directory operations
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BlobSeer/RADOS vs Lustre (HPC) and HDFS/Ceph (BD)

• Grid’5000 experimental testbed distributed over 11 sites in France and 
Luxembourg (parapluie cluster, Rennes)

• Each node: 2 x 12-core 1.7 Ghz 6164 HE, 48 GB of RAM and 250 GB 
HDD.

• HPC Apps: Lustre 2.9.0 and MPICH 3.2 [67], on a 32-node cluster 
(InfiniBand)

• BD Apps: Spark 2.1.0, Hadoop / HDFS 2.7.3 and Ceph Kraken, on a 
32-node cluster (Gigabit Ethernet)



RES User Conference, 18/09/2019 35

BlobSeer

Bogdan Nicolae; Gabriel Antoniu; Luc Bougé; Diana Moise; Alexandra Carpen-Amarie. 2011. BlobSeer: Next-generation 
data management for large scale infrastructures. J. Parallel Distrib. Comput. 71, 2 (February 2011), 169-184.
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RADOS/Ceph

ceph.com
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Lustre

Source: lustre.org
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HDFS

Source: hadoop.apache.org
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HPC Apps
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BD Apps
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Study insights

• The convergence at storage level is possible by using object-
based storage systems, achieving an improvement in the 
performance for both platforms (HPC and Cloud)

• By using objects, it is possible to achieve a maximum improvement 
of 32%
– Mainly because of the flat namespace
– Rados: direct reads and simple and decentralized metadata management 

(high performance for read operations)
– BlobSeer: multi-version concurrency control supports high-performance 

write operations with highly concurrent workloads (high performance for 
write operations)

• Issues of both systems:
– Although the Rados performance is excellent when the write contention is 

low, its lock-based concurrency control limits the performance of highly 
concurrent use cases.

– The multi-version concurrency control in BlobSeer provides good 
performance at write level, but the distributed metadata in BlobSeer
provides a significant read latency
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Týr

• Can we achieve both systems benefits?

• Apart from combining the best features of Rados and BlobSeer, there 
is a significant set of use cases with stricter consistency semantics
– Indexing and data aggregation (E.g., ALICE CERN LHC experiment)
– Distributed shared logs (E.g., Computational steering + in-situ 

visualization)
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Týr

Pierre Matri; Alexandru Costan; Gabriel Antoniu; Jesús Montes; María S. Pérez. "Týr: Blob StorageSystems Meet Built-
In Transactions". SC '16 Proceedings of the International Conference for High Performance Computing, Networking, 
Storage and Analysis. Article n. 49, Best student paper award finalist
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Týr

Pierre Matri; Philip Carns; Robert Ross; Alexandru Costan; María S. Pérez; Gabriel Antoniu;. ”SLoG: A large-scale
Logging Middleware for HPC and Big Data convergence”. ICDCS’2018. pp. 1507-1512, 2018.
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Týr design

• Predectible data distribution
– Combining data striping and consistent hashing techniques
– Avoiding the use of a centralized metadata server

• Transparent multi-version concurrency control
– Versioning at chunk level

• Lightweigh ACID transactions
– By using the transactional protocol Warp*
– By using chains of the servers involved in transactions and dependency graphs 

• Atomic transformation operations
– Efficient read-modify-write ops
– Particularly interesting for simple transformation operations (arithmetic, bit-wise)
– The client does not send the new data to be written, but the modification, avoiding 

two-round trips
• Software prototype with around 25,000 Rust and GNU C code lines

* R. Escriva, B. Wong and E. Sirer. Warp: Lightweight multi-key transactions for key-value stores. arXiv preprint
arXiv:1509.07815, 2015.
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HPC Apps
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BD Apps
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Conclusions

• Týr outperforms BlobSeer and traditional file systems, for both 
HPC and BDA applications
– Non blocking writes, by means of multiversion concurrency control
– Direct writes by using consistent hashing

• Týr has some limitations in comparison with Rados
– Except for write-intensive applications, due to the efficiency of the 

multiversion concurrency control
– As a result of stronger consistency guarantees (transactions)

• This is a first step for the convergence between HPC and BDA (at 
storage level)
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