

Barcelona Supercomputing Center Centro Nacional de Supercomputación

El futuro MareNostrum 5 y el procesador europeo

Prof. Mateo Valero

Director

European Research Council

Supporting top researchers from anywhere in the world

RES User Conference 18th and 19th of September 2019

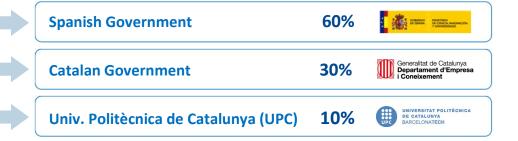
Patio de la Infanta, Zaragoza



Barcelona Supercomputing Center Centro Nacional de Supercomputación

Supercomputing services to Spanish and EU researchers

BSC-CNS objectives



R&D in Computer, Life, Earth and Engineering Sciences

PhD programme, technology transfer, public engagement

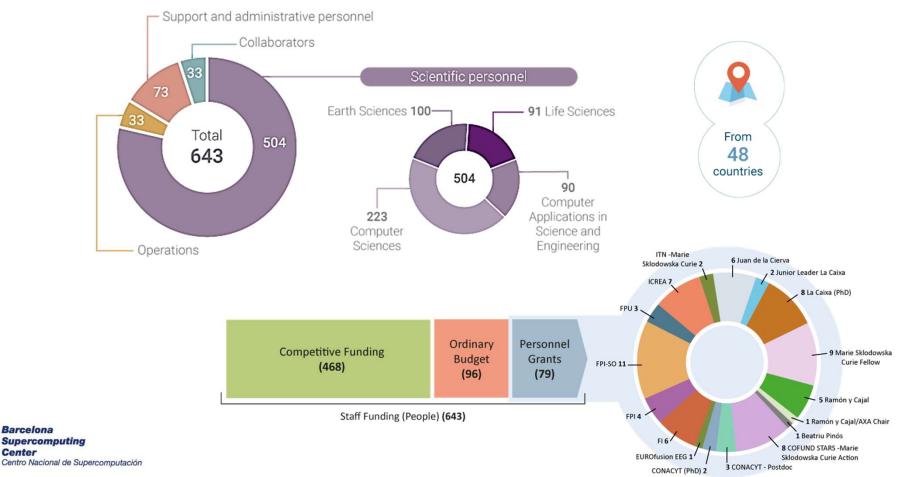
BSC-CNS is a consortium that includes

Supercomputing Center Centro Nacional de Supercomputación

Topic: High-Performance Computing in the world from 1980

• #	Institution	Count	Faculty
• 1	Ohio State University	36.3	11
• 2	Univ. of Illinois at Urbana-Champaign	33.7	19
• 3	Polytechnic University of Catalonia	27.7	18
• 4	Georgia Institute of Technology	26.8	22
• 5	University of Minnesota	26.5	10
• 6	University of Chicago	25.9	7
• 7	Purdue University	22.5	15
• 8	Indiana University	22.3	10
• 9	ETH Zurich	17.9	5
• 10	University of California - Berkeley	17.7	11

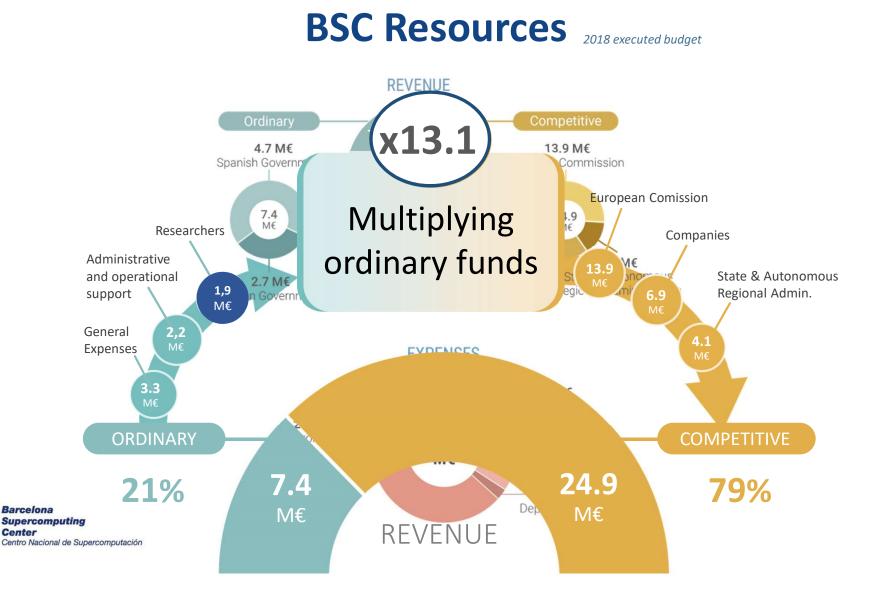
MareNostrum4


Total peak performance: 13,7 Pflops

General Purpose Cluster:	11.15 Pflops	(1.07.2017)
CTE1-P9+Volta:	1.57 Pflops	(1.03.2018)
CTE2-Arm V8:	0.5 Pflops	(????)
CTE3-KNH?:	0.5 Pflops	(????)

MareNostrum 1 2004 – 42,3 Tflops 1st Europe / 4th World New technologies MareNostrum 2 2006 – 94,2 Tflops 1st Europe / 5th World New technologies MareNostrum 3 2012 – 1,1 Pflops 12th Europe / 36th World MareNostrum 4 2017 – 11,1 Pflops 2nd Europe / 13th World New technologies

People



Barcelona

Center

BSC

BSC

TOP-10 Spanish Organizations in Horizon 2020

Legal name	EU Contribution (€)	Project Participations	
CSIC	230,434,008 €	536	
Tecnalia	106,426,784€	239	
Barcelona Supercomputing Center	76,524.698 €	132	
Universitat Politècnica de Catalunya	59,475,312€	158	
Universitat Pompeu Fabra	56,816,732€	109	
ICFO	56,517,896 €	78	
Universitat Autònoma de Barcelona	56,322,646 €	117	
Universidad Politécnica de Madrid	55,004.745 €	155	
Universitat Politècnica de València	53.806.967	139	
ATOS Spain	52,902,517€	148	

Barcelona Supercomputing Center Centro Nacional de Supercomputación Source: European Commission, Participant Portal H2020 Projects Updated Agust 2019

La carrera mundial de los supercomputadores

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Top 10, June 2019

		(
Computer	Cores	Accelerators	Rmax [PFlop/s]	Rpeak [PFlop/s]	Power (MW)	Effeciency [GFlops/Watts]	
IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband	2.414.592	2.211.840	148,6	200,8	10,1	14,7	
IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband	1.572.480	1.382.400	94,6	125,7	7.4	12,7	
Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway	10.649.600		93,0	125,4	15,4	6,1	
TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000	4.981.760	4.554.752	61,4	100,7	18,5	3,3	
Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR	448.448		23,5	38,7			
Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100	387.872	319.424	21,2	27,2	23,8	8,9	
Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect	979.072		20,2	41,5	7,6	2,7	
PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR	391.680	348.160	19,9	32,6	1,6	12,1	
ThinkSystem SD650, Xeon Platinum 8174 24C 3.1GHz, Intel Omni-Path	305.856		19,5	26,9			
IBM Power System S922LC, IBM POWER9 22C 3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Tesla V100	288.288	253.440	18,2	23,0			

Centro Nacional de Supercomputación

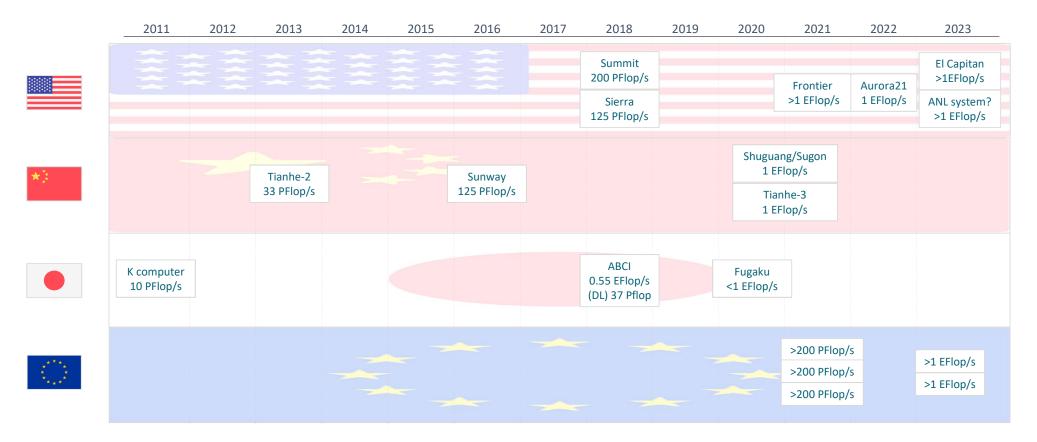
CAK RIDGE

System Overview

System Performance

- Peak performance of 200 petaflops for modeling & simulation
- Peak of 3.3 ExaOps for data analytics and artificial intelligence

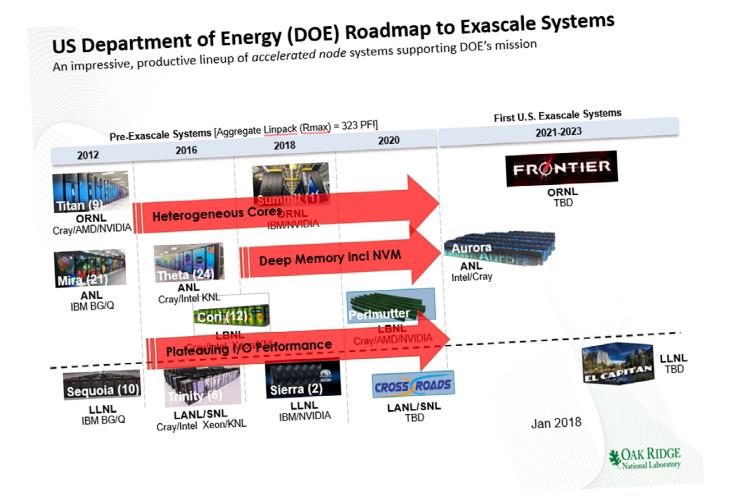
Each node has


- 2 IBM POWER9 processors
- 6 NVIDIA Tesla V100 GPUs
- 608 GB of fast memory
- 1.6 TB of NVMe memory

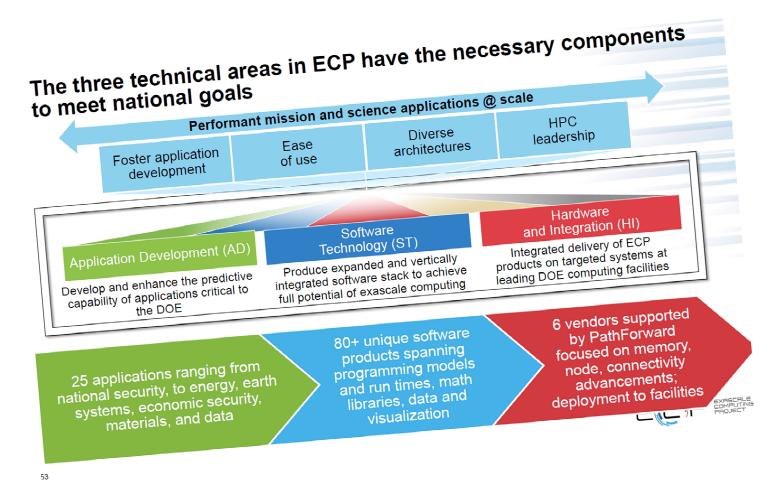
The system includes

- 4608 nodes
- Dual-rail Mellanox EDR InfiniBand network
- 250 PB IBM Spectrum Scale file system transferring data at 2.5 TB/s

The race towards exascale



Barcelona Supercomputing Center Centro Nacional de Supercomputación


September 2019

The Exascale Race – The US example

The Exascale Race – The US example

EuroHPC: Unifiving European HPC technologies

EuroHPC-JU members:

Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and Turkey

BDV

Centro Nacional de Supercomputación

"A new legal and funding structure - the EuroHPC Joint Undertaking shall acquire, build and deploy across Europe a world-class High-Performance Computing (HPC) infrastructure.

It will also support a research and innovation programme to develop the technologies and machines (hardware) as well as the applications (software) that would run on these supercomputers."

June 7: The new MareNostrum 5!!

La UE instalará en Barcelona uno de los tres superordenadores más veloces del continente

Apuesta por la ciencia

Llega una nueva generación de superordenadores a BCN

El Barcelona Supercomputing Center albergará II La Unión Europea aportará 100 millones de esta joya de la tecnología a partir del 2020 euros para el proyecto del MareNostrum 5

El superordenador más rápido de Europa recalará en Barcelona

La ciudad recibirá una inversión de la UE de 100 millones por albergar el supercomputador

Barcelona recibe el espaldarazo de Europa con la adjudicación del nuevo supercomputador

 La capital catalana acogerá en el BSC uno de los megaordenadores más potentes del continente, con 200.000 billones de operaciones por segundo

nuevos supercomputadores de la los megaordenadores más potentes UE a Barcelona, que se consolida del continente. Capaz de procesar

La Comisión Europea anunció ayer la adjudicación de uno de los tres nuevo MareNostrum 5 será uno de por segundo, será 18 veces más rápido que el actual MareNostrum 4 **TENDENCIAS 28, 29 Y EDITORIAL**

Barcelona gana el supercomputador

Europa apuesta por la capital catalana para acoger uno de los megaordenadores más potentes del continente

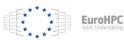
Europa confía en España para «supercompetir» con EE.UU. y Asia

▶ La Comisión Europea elige Barcelona para instalar uno de los nuevos superordenadores, que contará con una inversión de 200 millones de euros

MareNostrum 5 A European pre-exascale supercomputer

- 200 Petaflops peak performance (200 x 10¹⁵)
 - **Experimental platform** to create supercomputing technologies "made in Europe"

Hosting Consortium:


Spain Portugal Turkey Croatia Ireland

Barcelona Supercomputing Center Centro Nacional de Supercomputación


La carrera por la tecnología

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Where Europe needs to be stronger

- Only 1 of the 10 most powerful HPC systems is in the EU
- ➡ HPC codes must be upgraded
- Vital HPC hardware elements are missing: general purpose processor and accelerators
- EU needs its own source of as many of the system elements as possible

BSC and the EC

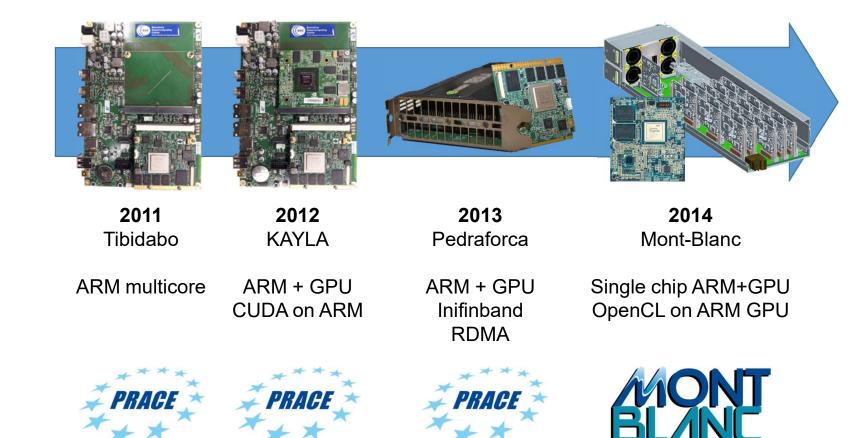
Supercomputing Centro Nacional de Supercomputación Final plenary panel at ICT Innovate, Connect, Transform conference, 22 October 2015 Lisbon, Portugal.

"The transformational impact of excellent science in research and innovation"

""Europe needs to develop an entire domestic exascale stack from the processor all the way to the system and application software", Mateo Valero, Director of Barcelona Supercomputing Center

Director of Barcelona Supercomputing Center, Mateo Valero, makes a pledge for developing a strong HPC ecosystem.

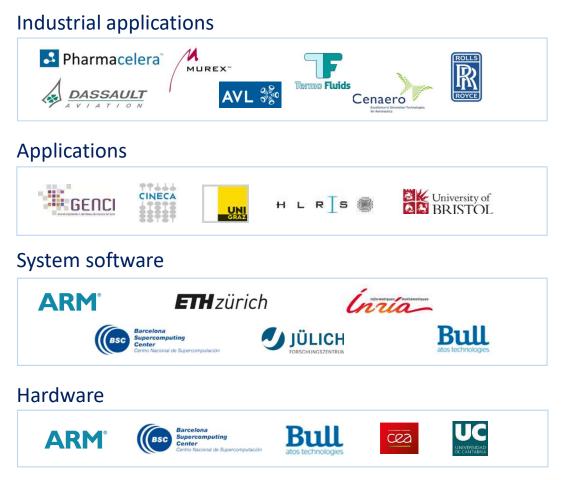
Published on 12/04/2016


Europe has the competence and skills to engage in the global competition towards Exascale Supercomputing, To fully benefit from the opportunities of the digital single market, Europe must strengthen the fundamental research on which digital transformation is based and build a stronger European High Performance Computing (HPC) ecosystem.

In a guest blog post on Commissioner Günther Oettinger's website Mateo Valero stresses the need for Europe to join the race towards Exascale supercomputing. According to him, there is an open window of opportunity for the High Performance Computing (HPC) development that would stimulate scientific breakthroughs and have tremendous impact on society and industry.

Share

ARM-based prototypes at BSC



Mont-Blanc HPC Stack for ARM

BSC Barcelona Supercom Center Centro Nacion

Supercomputing Center Centro Nacional de Supercomputación

Why Europe needs its own processor

- Processors now control almost every aspect of our lives
- Security (back doors, etc.)
- Possible future restrictions on exports to
 EU due to increasing protectionism
- A competitive EU supply chain for HPC technologies will create jobs and growth in Europe

A group of researchers showed how a Tesla Model S can be hacked and stolen in seconds using only \$600 worth of equipment

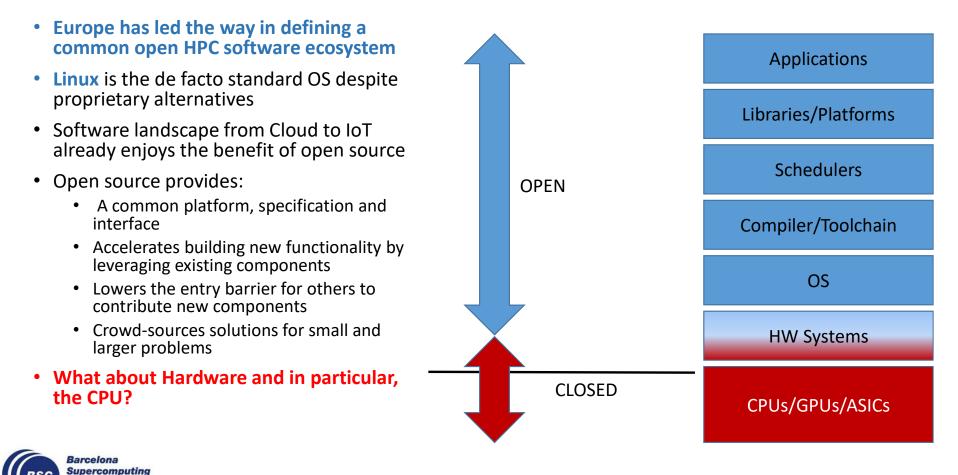
NSA May Have Backdoors Built Into Intel And AMD Processors

A jet sale to Egypt is being blocked by a US regulation, and France is over it

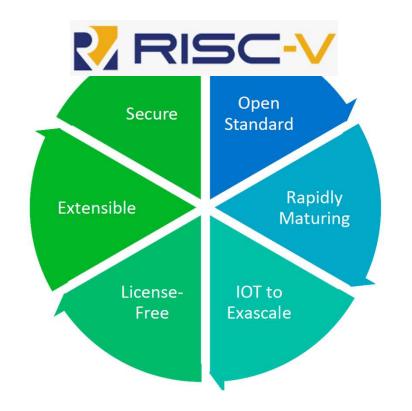
00

Google 'suspends some business with Huawei' after US blacklist

Amazon and Super Micro urge Bloomberg to retract 'unsupported' spy chip report


Car Hacking Remains a Very Real Threat as Autos Become Ever More Loaded With Tech

The US Cloud Act v The EU's GDPR -Data Privacy & Security


HPC Today

Center

Centro Nacional de Supercomputación

RISC-V is democratising chip-design

Barcelona Supercomputing Center

Centro Nacional de Supercomputación

More and more global IT actors are adopting RISC-V architectures to be vendor independent

- ➡ Google
- Amazon
- ➡ Western Digital
- 🔿 Alibaba
- And of course the entire IoT ecosystem for lower performance, lower energy applications.
- Major opportunity for ICT industry also in Spain

HPC Tomorrow

Europe can lead the way to a completely open SW/HW stack for the **Applications** world RISC-V provides the open source Libraries/Platforms hardware alternative to dominating proprietary non-EU solutions **Schedulers** • Europe can achieve complete technology independence with these Compiler/Toolchain foundational building blocks **OPEN** Currently at the same early stage in HW as we were with SW when Linux was OS adopted many years ago RISC-V can unify, focus, and build a **HW Systems** new microelectronics industry in Europe. CPUs/GPUs/ASICs Barcelona Supercomputing

Center

entro Nacional de Supercomputación

The European Processor Initiative

- In the same way BSC led the development of ARM processors for HPC in the various MontBlanc projects, now it leads the RISC-V HPC accelerator development in EPI
- EPI is a 100% funded EuroHPC project (120 M€) to develop European processor technology by 2022
- BSC was the original initiator of EPI and most active proponent in the scientific and technical community
- EPI is led by Atos/Bull with 28 partners from leading HPC industrial and academic centres

EPI Partners

Exascale supercomputing intitiative at BSC

- Ground floor opportunity to design and build a European supercomputer at the best supercomputing center in Europe!
- ➡ The open-source hardware opportunity
- RISC-V HPC accelerator: from concept to implementation
- Latest silicon technologies: 7nm, 5nm and 3 nm
- ➡ Working with industrial and academic partners
- HPC, automotive, bio, meteorological and other workloads

Barcelona desarrollará el chip de los superordenadores europeos

La CE financia una tecnología clave para la soberanía informática del continente

El proyecto del chip europeo estará liderado por Barcelona

LAVANGUARDIA

Barcelona desarrolla el chip de los futuros superordenadores europeos

El superordenador MareNostrum 5 se lanzará a la conquista de procesadores y chips 'made in Europe'

El MareNostrum 5 incluirá una plataforma para crear chips europeos

El próximo superordenador contribuirá al desarrollo de tecnologías íntegramente desarrolladas en Europa

El súperordenador presentará batalla en la fabricación de chips y procesadores europeos

The future is wide open!

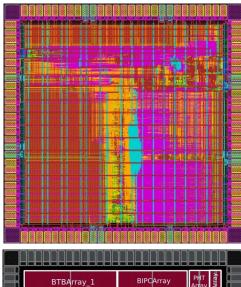
- There is an urgent need, from mobile phones to supercomputers: more compute at lower power
- The RISC-V ecosystem is in the nascent period where it can become the de facto open hardware platform of the future
 - An opportunity for Europe to lead the charge to creating a full stack solution for everything, from supercomputers down to IoT devices

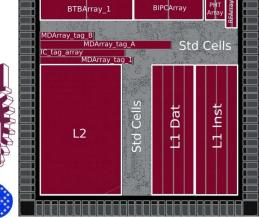
- Our main aim: create European chips that meet the needs of future European and global markets across HPC, cloud, automotive, mobile to IoT
- ➡ This is the framework for the Exascale Supercomputing Initiative at BSC

How to implement this "Open Future World"?

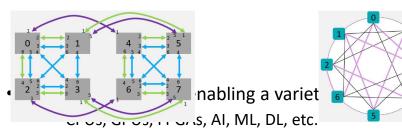
- The BSC launches LOCA, the new European Laboratory for Open Computer Architecture, a joint long-term initiative to promote a vibrant RISC-V ecosystem, HQ in Southern Europe, supported by:
- The European Commission
- The BSC trustees
- The European Academics
- The main IT worldwide companies
- The digital technology industry in Spain?

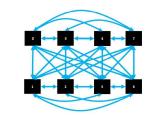
Centro Nacional de Supercomputación


First Lagarto Tapeout


- Target design:
 - Simple in-order core with 5 stages, single issue
 - 16KB L1 caches, 64KB L2 cache, TLB
 - Memory controller on the FPGA side
 - FPGA ASIC communication via packetizer
 - Debug ring via JTAG
 - Target technology: TSMC 65nm
 - Design fits in the total area budget of 2.5mm2
 - Submitted for fabrication in May 2019
- Collaborative project with different teams:
 - RTL Design: Lagarto (BSC + CIC-IPN)
 - Verification (BSC)
 - Logic Synthesis (UPC + BSC)
 - Physicial design (IMB-CNM + BSC)
 - Tapeout and bringup (IMB-CNM + BSC)

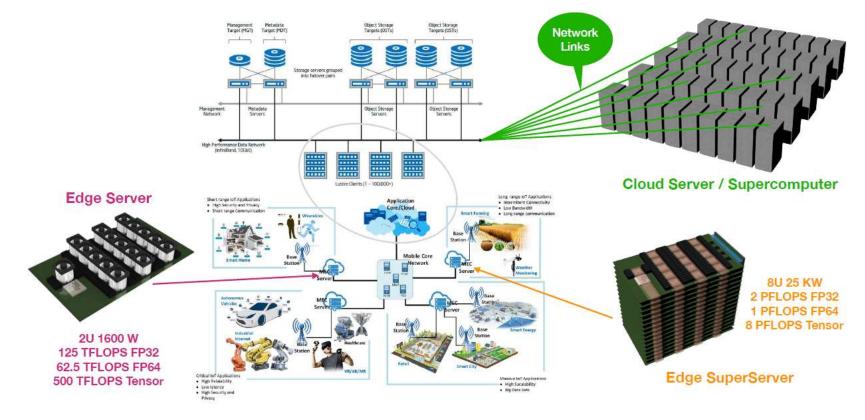
The HPC Future is Wide Open!


- Can open source hardware play a big role like open source software?
- How do we build flexible accelerators?
- Can we leverage commodity components and merge them with HPC systems?
- Can we jumpstart HPC hardware development in Europe?


An Open Path to the Future

)rs

- We can change the balance of Host CPUs to Accelerators
 - OCP Accelerator Module (OAM): 1-8 or more accelerators per CPU
 - Partial to All-to-All OAM communication topologies:



- FPGAs: Accelerators, prototypes and emulators
- MareNostrum Experimental Exascale Platform

From IoT, Edge Computing, Clouds to Supercomputers

What does a 30 MW ExaFLOP SC look like?... We have some ideas, come join the fun!

- ➡ 64 cabinets: 1.0 Exaflops
- Cabinet: 16 Petaflops,
 400 KW (water cooled)
- → 256 nodes, 24,576 cores
- 128 to 512 Terabytes DRAM
- ➡ 0.1 Byte/flop bandwidth ratio
- ➡ 40 Gflops/W efficiency
- 7nm initial, 5 and 3 nm follow-on designs

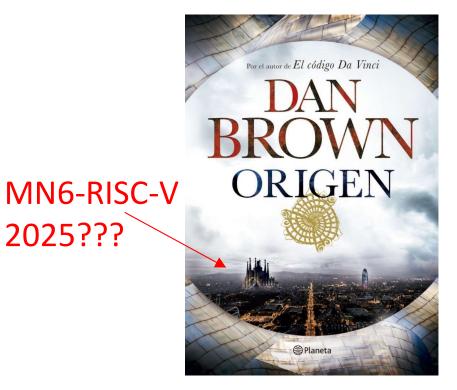
BSC is hiring... Creating high value job opportunities in Spain

BSC is looking for talented and motivated professionals with expertise in the design and verification of IPs to be integrated into a European HPC accelerator. The design is based on a RISC-V architecture. This is a NEW project to build an energy efficient Exascale system.

Experienced professionals (Engineers and/or PhD holders) are wanted for:

- RTL / Microarchitecture
- Verification
- ➡ FPGA design
- ➡ Simulation
- Software: compilers/OS/RT

RISC-V has the opportunity to be like Linux. It would be global and go beyond Airbus and Galileo!



MareNostrum RISC-V inauguration 2021

Centro Nacional de Supercomputación

