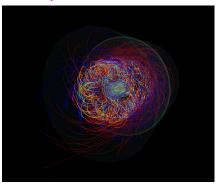


Holographic Heavy Ion Collisions

arXiv:1603.01254 arXiv:1604.06439 arXiv:1703.02948 arXiv:1703.09681


Collaborators:

Yago Bea (UB), Jorge Casalderrey-Solana (Oxford), David Mateos (UB/ICREA), Daniel Santos (UAB), Carlos Sopuerta (UAB/LISA), Miquel Triana (UB), Miguel Zilhao (UB)

11th RES Users' Meeting

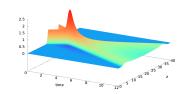
Motivations

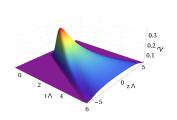
Quark-Gluon Plasma:

LHC reconstructed event from the first heavy ion collisions [ALICE 2010]

Black Holes:

Collision of two Black Holes, merging into one [Simulating eXtreme Spacetimes 2016]

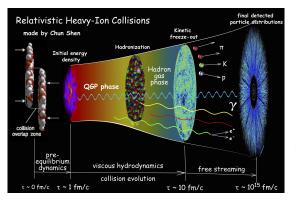

gauge/gravity correspondence:


bridge between physical phenomena in gauge theories and gravity.

MareNostrum success story

pprox 850 CPU khours computations on RES MareNostrum III/IV:

- scientific highlights:
 - first non-conformal collisions
 - EoSization
 - $\zeta/s \ge 0.025$ estimate
 - spinodal instability across phase transition
 - New applicability of hydrodynamics
- scientific output (from 03/2016):
 - 3 JHEP publications
 - MSCA fellowship, 2 PhD's
 - 4 plenaries + 20 talks at international conferences
 - 2 colloquium Utrecht/Harvard University + 7 seminars (CERN, CEA/Saclay, Brookhaven National Laboratory, ..)


Non-conformal model

- Introduction Heavy-Ion collision
- stage II: Hydrodynamics and viscosities
- stage II: QGP properties
- Introduction Heavy-Ion collision the 'little bang'
- Introduction gauge gravity duality
- stage I: Non-conformal General Relativity setup
- Non-conformal Thermodynamics

Shock wave dynamics

- Non-conformal shock collision
- Equilibration times I
- Equilibration times II
- Spinodal instability
- Spinodal instability: Hydrostatic + Hydrodynamic evolution

Introduction Heavy-Ion collision - the 'little bang'

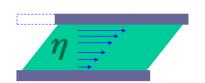
Stages of HI collision:

- 1) Out of equilibrium
- 2) Quark-Gluon Plasma
- 3) Hot Hadron Gas

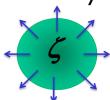
Cartoon of a ultra-relativistic heavy-ion collision: the two nuclei approach, collide, first are out-of-equilibrium, form a Quark-Gluon Plasma (QGP), the QGP expands and hadronizes, finally hadrons rescatter and freeze out

stage II: Hydrodynamics and viscosities

Hydrodynamics assumes mean free path goes to zero and conservation of energy and momentum

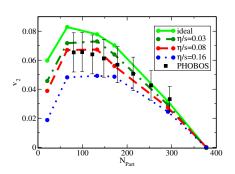

$$\partial_{\mu}T^{\mu\nu}=0$$

expansion around isotropic equilibrium distribution:

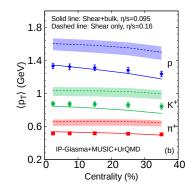

$$T_{\mu
u}^{
m hyd} = T_{\mu
u}^{
m ideal} - \eta\,\sigma_{\mu
u} - \zeta\,\Pi\,\Delta_{\mu
u} + \Pi_{\mu
u}^{(2)}$$

Together with the equation of state of the fluid, which is defined as a functional relation between conserved quantities \mathcal{E} , P, they form a closed system of equations.

Shear viscosity

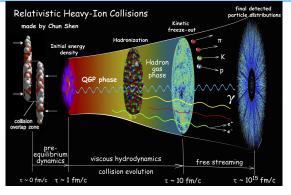


Bulk viscosity



stage II: QGP properties

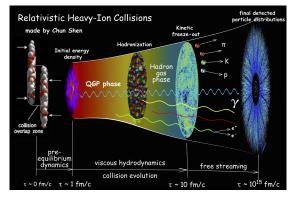
Heavy-Ion collision flow observable match hydro simulation assuming early hydrodynamization [Heinz, Kolb 2001]



shear viscosity over entropy density ratio $\eta/s \approx 0.08$ \rightarrow nearly perfect fluid [Romatschke 2007]

Hydro simulation agreement improves with bulk viscosity ζ [Denicol *et al.* 2015]

Introduction Heavy-Ion collision - the 'little bang'



Stages of HI collision:

- 1) Out of equilibrium
- 2) Quark-Gluon Plasma
- 3) Hot Hadron Gas

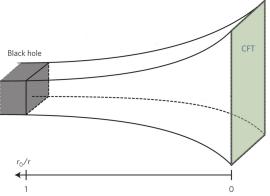
How to solve initial multibody Quatum-ChromoDynamics problem? equilibrium aspects \rightarrow lattice QCD classical aspects \rightarrow kinetic theory weak coupling \rightarrow perturbative QFT strongly coupled dynamics \rightarrow ?

ntroduction Heavy-Ion collision - the 'little bang'

Stages of HI collision:

- 1) Out of equilibrium
- 2) Quark-Gluon Plasma
- 3) Hot Hadron Gas

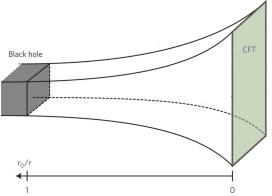
How can we describe the first stage at strong coupling?


How long is the first stage? LHC Data indicates $\leq 10^{-23}$ s

What determines when hydro becomes applicable?

What are the initial conditions for the Quark-Gluon-Plasma?

Introduction gauge gravity duality


Quantum gravity in d+1 dimension AdS \leftrightarrow QFT in d dimension

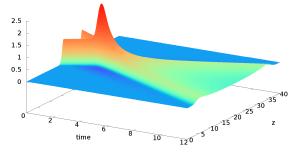
IIB string theory on $AdS_5\times S_5\leftrightarrow \mathcal{N}=$ 4 Super-Yang-Mills [Maldacena 1998, Witten 1998]

Introduction gauge gravity duality

Quantum gravity in d+1 dimension AdS \leftrightarrow QFT in d dimension

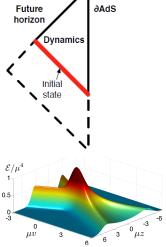
IIB string theory on $AdS_5 \times S_5 \leftrightarrow \mathcal{N} =$ 4 Super-Yang-Mills [Maldacena 1998, Witten 1998]

shear visocity over entropy density ratio $\frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08$ [Policastro, Son, Starinets 2001]


stage I: holographic shock waves

shock wave collision: black hole formation

$$\left(\mathcal{E}, J_{\mathcal{E}}, P_{x^i}\right) \iff$$


$$\frac{\kappa_5^2}{2L^3}\left(-T_t^t,T_t^z,T_{x^i}^{x^i}\right)$$

Holography allows to explore far from equilibrium dynamics:

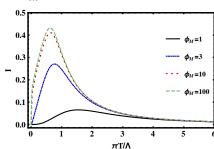
Energy density evolution of a typical shock wave collision

stage I: holographic shock waves properties


~~~~

Strong coupling toolkit for out of equilibrium dynamics:

Fast hydrodynamization with first shock wave collisions in the characteristic formulation  $t_{\mathrm{h}yd} < 10^{-23}$  although very anisotropic  $\frac{P_T}{P_L}\big|_{t_{\mathrm{h}yd}} \gg 1$  at hydrodynamization [Chesler, Yaffe 2011]

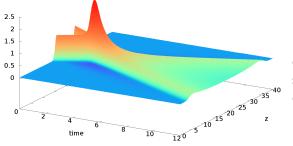

Thin shocks hydrodynamize fast too, Initial energy per unit transverse area  $\mu$  relates to shock product after collision:  $t_{\rm hyd}\,T_{\rm hyd}<\frac{1}{2}$ , for  $T_{\rm hyd}=0.3\mu$  [Casalderrey-Solana, Heller, Mateos, van der Schee 2013]

Einstein-Hilbert action coupled to a scalar with non-trivial potential in five-dimensional bottom-up model:

$$S = rac{2}{\kappa_5^2} \int d^5 x \sqrt{-g} \left[ rac{1}{4} \mathcal{R} - rac{1}{2} \left( 
abla \phi 
ight)^2 - V(\phi) 
ight]$$

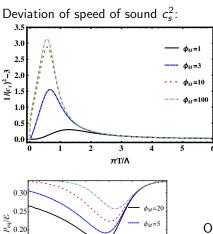
$$V(\phi) = -\frac{1}{12\phi_M^4}\phi^8 + \left(\frac{1}{2\phi_M^4} \pm \frac{1}{3\phi_M^2}\right)\phi^6 - \frac{1}{3}\phi^3 - \frac{3}{2}\phi^2 - 3$$

Interaction measure  $I=\frac{\epsilon-3p}{\epsilon+p}$  as a measure of non-conformality, NON-conformal at intermediate temperatures, conformal at IR and UV




# Stage I: Non-conformal holographic shock waves

shock wave collision: black hole formation


$$\left(\mathcal{E}, J_{\mathcal{E}}, P_{x^i}, \mathcal{V}\right) \qquad \iff \qquad \frac{\kappa_5^2}{2L^3} \left(-T_t^t, T_t^z, T_{x^i}^{x^i}, \mathcal{O}\right)$$

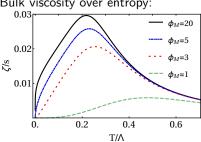
Holography allows to explore far from equilibrium dynamics:



Energy density evolution of a typical scalar shock wave collision

Deforming  $\mathcal{N}=4$  Super Yang-Mills with an operator  $\mathcal{V}$  dual to the scalar field. The source  $\Lambda$  breaks scale invariance explicitly and triggers a non-trivial Renormalization Group (RG) flow.




0.15

0.10

 $10^{-5}$ 0.001 0.100 10

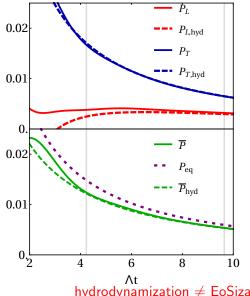
 $\mathcal{E}/\Lambda^4$ 

Bulk viscosity over entropy:



$$P_{\mathrm{eq}}(\mathcal{E}) = \frac{1}{3} \left[ \mathcal{E} - \Lambda \mathcal{V}_{\mathrm{eq}}(\mathcal{E}) \right]$$
.

 $\phi_M=2$ 1000


Out of equilibrium the average pressure is not determined by the energy density alone, as the scalar expectation value  ${\cal V}$ fluctuates independently.

#### Outline

#### Shock wave dynamics

- Non-conformal shock collision
- Equilibration times I
- Equilibration times II
- Spinodal instability
- Spinodal instability: Hydrostatic + Hydrodynamic evolution

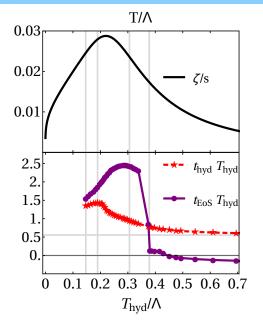
#### Non-conformal shock collision



Hydrodynamics expansion:

$$\begin{split} \partial_{\mu} T^{\mu\nu} &= 0 \\ T^{\mu\nu} &= (\epsilon + p) u^{\mu} u^{\nu} + p g^{\mu\nu} \\ &+ \eta \Pi^{\mu\nu} + \zeta \Pi (g^{\mu\nu} + u^{\mu} u^{\nu}) \end{split}$$

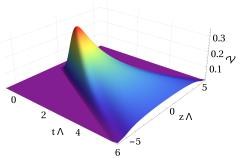
Hydrodynamization:

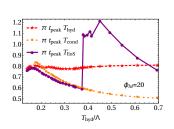

$$\left|P_{L,T} - P_{L,T}^{\mathrm{hyd}}\right|/\bar{P} < 0.1$$

EoSization:

$$\left| ar{P} - P_{\mathrm{eq}} \right| / ar{P} < 0.1$$

 $hydrodynamization \neq EoSization \neq isotropization$ 


# Equilibration times

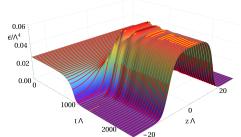



#### Non-conformal T scan:

- t<sub>hyd</sub> slow down, still very fast
- ullet small required  $\zeta/s \geq 0.025$  for non-conformal effects
- ordering of  $t_{\mathrm EoS}$  and  $t_{\mathrm hyd}$  depends on bulk viscosity

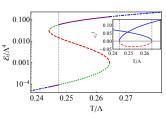
#### Evolution of the scalar condensate:






$$t_{
m peak} pprox rac{c}{\pi \, T_{
m hyd}}$$

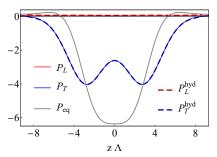
Universal effects of the dynamics near the horizon that forms deep in the bulk even in non-conformal theories


# Spinodal instability

Energy density evolution of black branes afflicted by the Gregory-Laflamme instability:

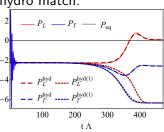


excited unstable mode growth until non-linear saturation


Energy density versus temperature for the gauge theory:



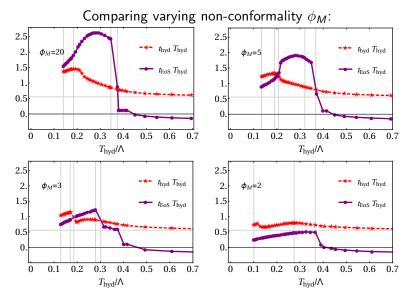
The dashed red curve is locally unstable, the dotted green curve metastable.


# Hydrostatic + Hydrodynamic evolution

$$\begin{split} & \text{Hydro description } P_{L/T}^{\text{hyd}} = \\ & P_{\text{eq}}(\mathcal{E}) + c_{\text{L/T}}(\mathcal{E})(\partial_z \mathcal{E})^2 + f_{\text{L/T}}(\mathcal{E})(\partial_z^2 \mathcal{E}) \end{split}$$



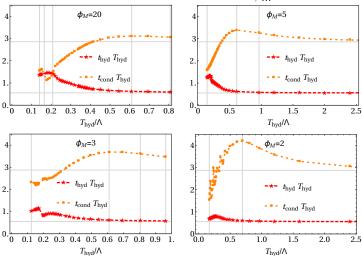
Pressures agree with hydrodynamic prediction for a different state


Pressures predicted by hydro match:



Early time behaviour with exponential decay of quasi-normal modes

- First simulation of a holographic non-conformal model for heavy ion collisions:
  - New relaxation channel from bulk viscosity: *EoSization*
  - Fast hydrodynamization at early time with conservative estimate  $\zeta/s \approx 0.025$  for non-conformal effects
  - Paths to equilibrium in non-conformal collisions:
     Four orderings of Condensate relaxation, EoSization,
     Hydrodynamization times
- New example of the applicability of hydrodynamics to systems with large gradients: Gregory-Laflamme dual to spinodal instability settling to static inhomogeneous black brane
- More studies are on the way:
  - Asymmetrical collisions, exploding balls
  - Different potentials:  $\mathcal{N}=2^*$ , Gubser, ...


# Backup: Non-conformal theories



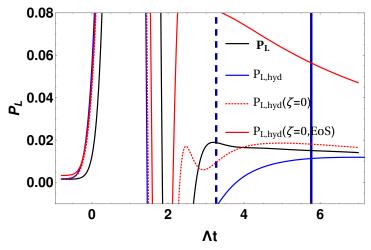
conservative estimate  $\zeta/s>0.025$  needed for  $t_{\mathrm EoS}>t_{\mathrm hyd}$ 

kimilian Attems, UB Holographic Heavy Ion Collisions 21/21

# Condensate relaxation times and hydrodynamization times for collisions with different $\phi_M$ :



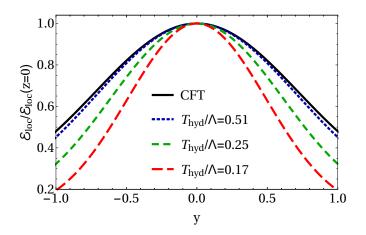
#### Backup: Transverse pressure


Landau match of the transverse pressure, Landau frame assumes no momentum flow  $T_{0i}^{'}=0$ 



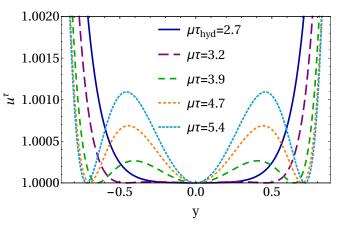
Equation of state essential for hydrodynamics prediction, bulk viscosity slows down evolution lowers pressures

# Backup: Longitudinal pressure


Landau match of the longitudinal pressure



Solid vertical line indicates hydrodynamization time  $t_{
m hyd}$  once both pressures agree with hydrodynamics


#### Backup: Rapidity profile

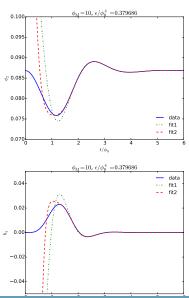
At Hydrodynamization time almost Gaussian distribution:



Higher energy densities results in broader rapidity profile

Boost invariant flow at mid rapidity:

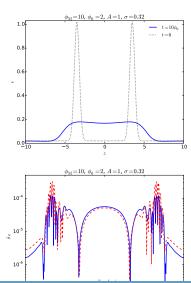



the component of the velocity field along the proper time direction

$$u^{\tau} = \cosh(y) u^{t} - \sinh(y) u^{z}$$

Maximilian Attems, UB Holographic Heavy Ion Collisions 2

# Backup: Quasi-Normal-Modes


 $\phi_2$  and  $\emph{b}_4$  as functions of time for a  $\emph{z}\text{-independent}$  configuration



Maximilian Attems, UB Holographic Heavy Ion Collisions 21/2

# Backup: Convergence analysis

Differences between the coarse and medium (blue solid line) and the medium and fine (red dashed line) resolution run



Maximilian Attems, UB Holographic Heavy Ion Collisions 21/21