

Performance Prediction of GPU-based Deep Learning Applications

Danilo Ardagna

danilo.ardagna@polimi.it

Motivations

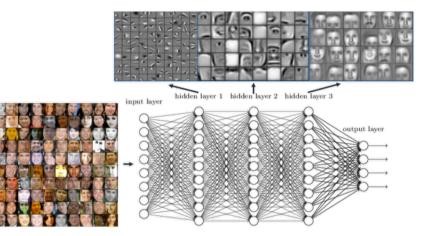
Target scenario and goals

Performance models and Scheduling problem

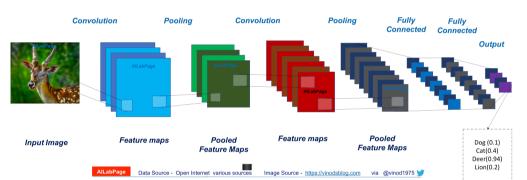
Experimental Results

Conclusions & Future Works

- Deep learning is widely used in commonplace activities
- Model learning greatly benefits from GPUs
 GPUs are 5 to 40x faster than CPUs
- High-end systems cost up to **400k€** (single node)
- Cloud provider offer pay-as-you-go GPU-powered VMs
 - GPU based VMs time unit cost is 5-8x higher than high-end CPU-only VMs



- Deep learning is widely used in commonplace activities
- Model learning greatly benefits from GPUs
 GPUs are 5 to 40x faster than CPUs
- High-end systems cost up to **400k€** (single node)
- Cloud provider offer pay-as-you-go GPU-powered VMs
 - GPU based VMs time unit cost is 5-8x higher than high-end CPU-only VMs



Ø

-0-

X

 Deep Learning applications: heterogeneous and irregular computational patterns

Cloud computing: offers flexibility, dynamically adjusting resources as needed

Which configuration should we choose to avoid under and overestimating resources?

ML models to predict execution time given GPU type and number

Online joint capacity planning of on-demand VMs and DL job scheduling

DL job

Our Approach: Machine learning

a-GPUBench

Profiling

o 🕅 👰 🔁 🗶

Model

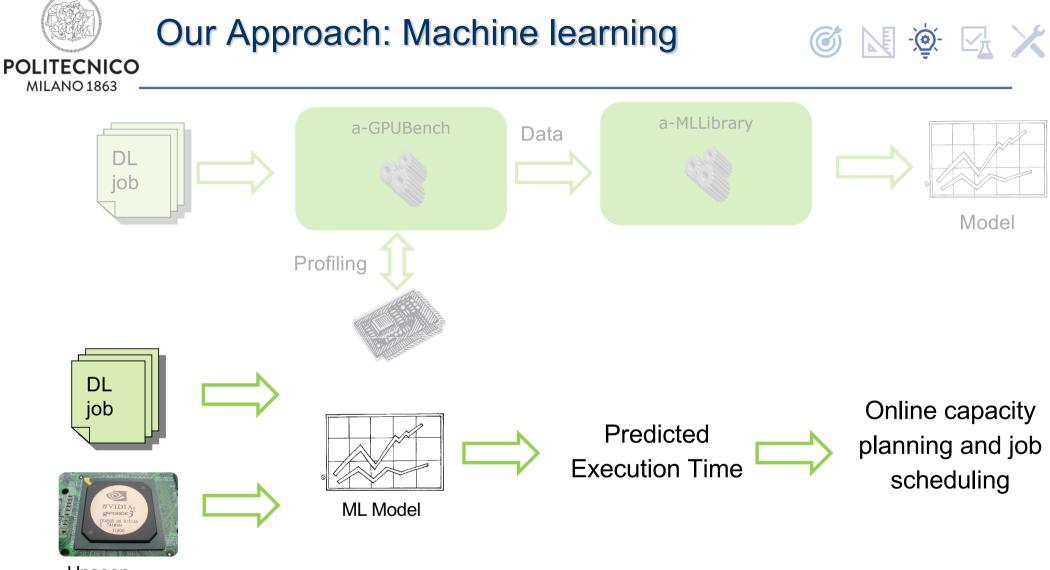
https://github.com/eubr-atmosphere/a-GPUBench

https://github.com/eubr-atmosphere/a-MLLibrary

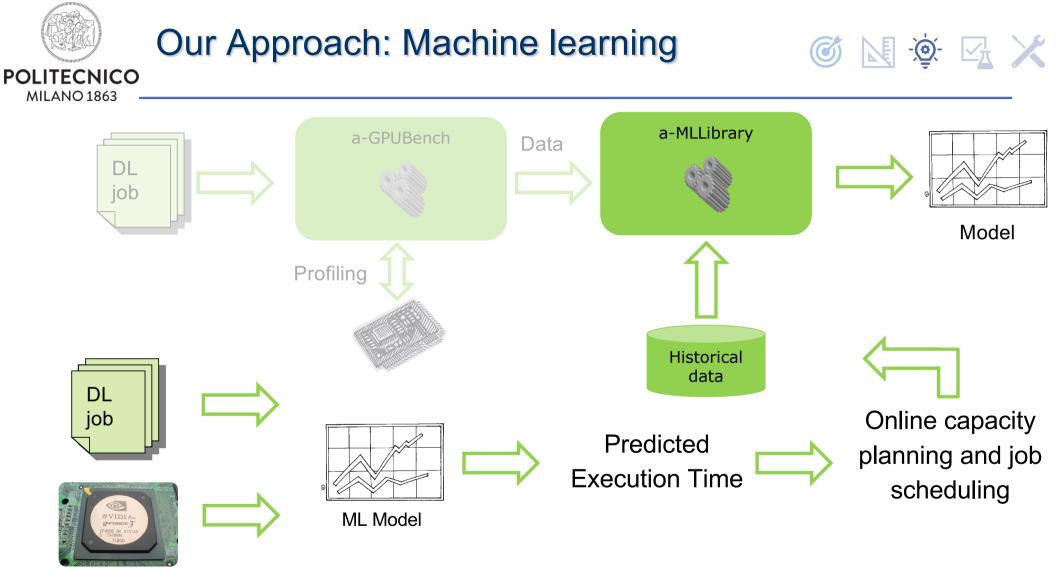
a-MLLibrary

13th RES Users Conference – Zaragoza, 19th September 2019

Data



Unseen configuration



Unseen configuration

ML models to predict execution time given GPU type and number

Online joint capacity planning of on-demand VMs and DL job scheduling

End-to-End Models

Per-Layer Models

Online joint capacity planning of on-demand VMs and DL job scheduling

End-to-End & Per-Layer models

o 🕅 🖗 🔁 🗶

- Linear regression
- Features set:
 - #iterations, batch size, GFlops/s, #GPUs, #threads, disk delay
- Features augmentation: inverse and cross-over terms
- Features selection: Draper and Smith approach

E. Gianniti, L. Zhang, D. Ardagna. **Performance Prediction of GPU-based Deep Learning Application**. Closer 2019 Proceedings. 279-286. Crete, Greece.

- Linear regression
- Feature: operation complexity
 - Derived from architecture and hyperparameters

$$t_l = \beta_{0l} + \beta_{1l}c_l + \varepsilon_l$$

$$\hat{t}^{\text{CNN}} = I \sum_{l \in L} \hat{t}_l$$

 Benefits: prediction on unseen applications

Layer	Forward	Backward
Conv	$H_{\rm f}W_{\rm f}C_{\rm in}C_{\rm out}$	$(2H_{\rm f}W_{\rm f}C_{\rm in}+1)C_{\rm out}$
\mathbf{FC}	$H_{\rm in}W_{\rm in}C_{\rm in}C_{\rm out}$	$2H_{\rm in}W_{\rm in}C_{\rm in}C_{\rm out}$
Loss	$4C_{\rm out} - 1$	$C_{\rm out} + 1$
Norm	$5C_{\rm out} + C_{\rm n} - 2$	$8C_{\rm out} + C_{\rm n} - 1$
Pool	$H_{\rm f}W_{\rm f}C_{\rm out}$	$(H_{\rm f}W_{\rm f}+1)C_{ m out}$
ReLU	$3C_{ m out}$	$4C_{ m out}$

🎯 📐 💩 🔀 🗶

Several well-known Neural networks AlexNet

GoogLeNet

VGG-16

ResNet

Mozilla DeepSpeech

Tensorflow 1.8.0, Pytorch 0.3.1, Caffe 1.0

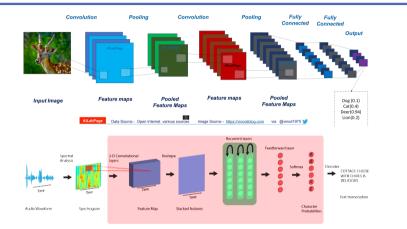
Training data sets:

ImageNet dataset (ILSVRC12)

Common Voice open source corpus

HW configurations:

Microsoft Azure NC (K80), NV(M60), in-house servers (P600, Geforce GTX 1080Ti)



End-to-End Models Results

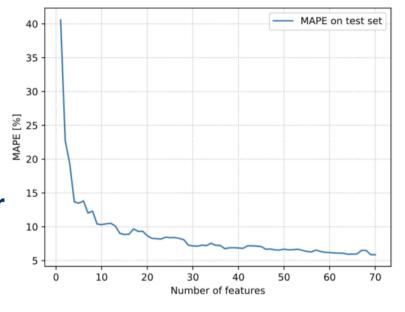
- Performance prediction goals:
 - Extrapolation on batch size
 - Exploitation of new hardware
 - Training of new versions of a CNN

GPUs number Extr.

		GPU Type			
Network	Framework	K80	M60	GTX 1080Ti	
AlexNet	PyTorch	7.21	12.18	4.98	
Alexiver	TensorFlow	24.75	17.27	8.77	
ResNet-50	PyTorch	5.11	9.04	11.76	
KesNet-50	TensorFlow	24.58	18.29	6.54	
VGG-19	PyTorch	12.20	15.98	24.13	
100-19	TensorFlow	8.84	13.52	13.65	

Extr. Inner Modules number

			GPU Type M60		
Network	Framework	Max N. IMs	1	2	4
ResNet	PyTorch	4	23.51	27.95	17.40
ResNet	PyTorch	5	24.85	25.11	16.75
ResNet	PyTorch	6	26.76	20.40	16.63
ResNet	PyTorch	8	17.06	7.93	15.99



Batch Size Extr.

			GPU Type												
		Pe	500		K	80			M	[60			GTX 1	1080Ti	
Network	Framework	1	2	1	2	3	4	1	2	3	4	1	2	4	8
AlexNet	PyTorch	11.12	7.85	1.74	3.33	1.81	0.66	6.19	3.49	6.58	0.75	0.43	1.62	1.15	4.16
Alexiver	TensorFlow	9.83	10.04	2.30	2.61	4.28	2.82	7.19	6.36	6.91	6.96	4.06	5.36	1.14	1.12
ResNet-50	PyTorch	10.64	11.97	0.76	7.83	3.09	4.53	3.60	20.04	9.58	4.64	12.62	11.93	20.63	4.29
Residet-50	TensorFlow	2.37	14.35	10.25	1.27	1.84	6.83	2.08	2.79	3.07	21.49	0.68	6.44	1.43	12.06
VGG-19	PyTorch	-	-	13.88	21.71	27.63	9.65	10.74	18.54	13.81	7.68	24.98	17.40	2.93	14.06
VGG-19	TensorFlow	-	-	18.20	0.92	1.16	10.58	7.34	5.06	2.74	6.92	22.88	6.37	24.12	23.56

Network	Framework	MAPE
AlexNet	PyTorch	8.28
Alexivet	TensorFlow	5.08
ResNet-50	PyTorch	18.09
Residet-50	TensorFlow	10.10

Batch Size Extr.

		GPU Type and Number					
		P6	00	K80			
Network	Framework	1	2	1	2	3	4
DeepSpeech	Tensorflow	6.69	5.25	22.46	15.82	3.14	4.41

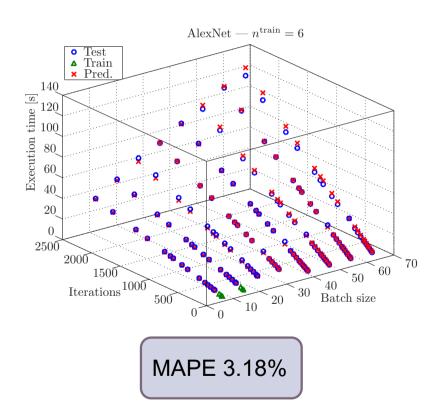
			GPU Type and Number						
		M60					GTX	$1080 \mathrm{Ti}$	
Network	Framework	1	2	3	4	1	2	4	8
DeepSpeech	TensorFlow	19.08	12.98	7.09	7.11	5.80	9.63	13.87	5.93

GPUs number Extr.

			GPU	Туре
Network	Framework	K80	M60	GTX 1080Ti
DeepSpeech	TensorFlow	11.86	17.49	20.97

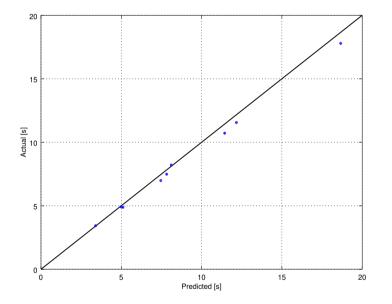
Comput. Power Extr.

		Used I	Features
Network	Framework	All	5
Deepspeech	Tensorflow	11.72	10.14



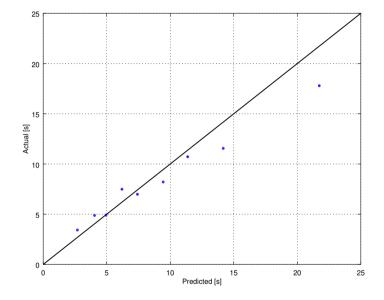
Ø N

· 🔄 🔀 🔀



AlexNet model, AlexNet prediction

E. Gianniti, L. Zhang, D. Ardagna. **Performance Prediction of GPUbased Deep Learning Application**. SBAC-PAD 2018 Proceedings. 167-170. Lyon, France.



 (\mathcal{O})

GoogLeNet model, AlexNet prediction

AlexNet-AlexNet MAPE 4.75% GoogLeNet-AlexNet MAPE 9.29%

Predict execution time given an amount of resources available

Online joint capacity planning of on-demand VMs and DL job scheduling

Reference System and Assumptions

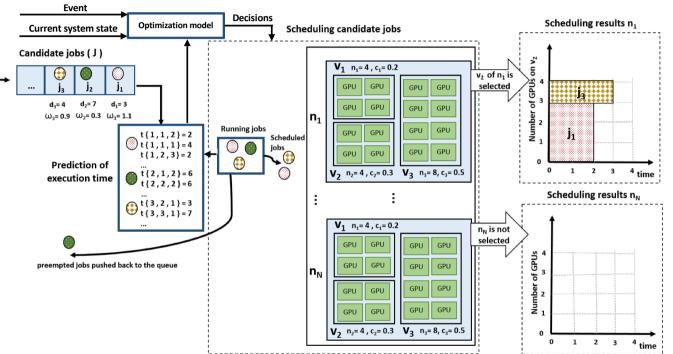
S 💽 🔄 🔀 🗶

Joint capacity planning of on-demand VMs and DL job scheduling:

- 1. Decide the number of active nodes
- 2. Decide the best VM type for each node -
- 3. Partition the GPUs among the jobs
- 4. Determine an optimized jobs schedule

Online: decisions are taken every time an event occurs

- 1. A new job is submitted
- 2. A running job terminates
- 3. H units of time have elapsed
- Solution Based on MILP
- Several formulations



A. Jahani, M. Lattuada, M. Ciavotta, D. Ardagna, E. Amaldi, L. Zhang. **Optimizing on-demand GPUs in the Cloud for Deep Learning Applications Training**. IEEE ICCCS 2019 Proceedings- To Appear. Rome, Italy.

MILANO 1863

Experimental campaign

os 💽 🔄 🔀 🗶

• Simulation

- Ad-hoc event-based simulator and a generator of random instances implemented in Python
- ▶ Gurobi Optimizer 8.0
- Jobs inter-arrival times have been generated according to Poisson Distributions with means {30s, 45s}
- The number of submitted jobs in each instance is set equal to 10 times the number of available nodes
- ► Five instances generated for each set of parameters
- Intel Xeon Silver 4114 server exploiting 12 cores and 32 GB of memory

VM type	GPU type	# GPU	$\operatorname{Cost}(\$/\operatorname{hour})$
Standard NC6	K80	1	0.56
Standard NC12	K80	2	1.13
Standard NC24	K80	4	2.25
Standard NV6	M60	1	0.62
Standard NV12	M60	2	1.24
Standard NV24	M60	4	2.48
In-house server 1	Quadro P600	2	0.11
In-house server 2	GTX 1080 Ti	8	1.13
In-house server 3	Quadro P600	8	0.44

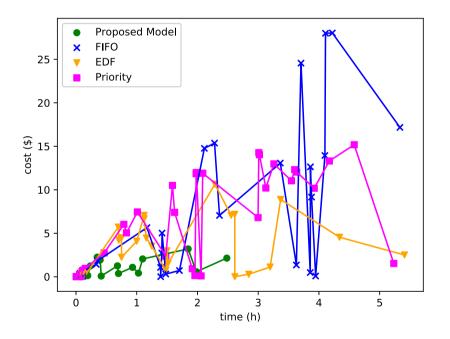
Real prototype

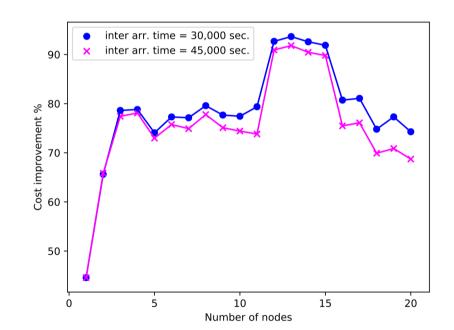
- Deployed on Microsoft Azure
- 2 nodes 4 VM types (NC6, NV6, NV12, NV24)
- ► Jobs submitted every 300 seconds

Job	Application	N. Inputs	Epochs	Batch Size
JJ1	TensorFlow deepspeech	64	158	4
JJ2	PyTorch vgg19	130000	1	32
JJ3	TensorFlow vgg19	130000	1	32
JJ4	PyTorch alexnet	130000	12	256
JJ5	PyTorch resnet50	130000	3	64
JJ6	TensorFlow resnet50	130000	3	64

POLITECNICO MILANO 1863

> Comparison against First-in-First-out (FIFO), Earliest Deadline First (EDF), and Priority Scheduling (PS) rules with no preemption and exploiting the model to select the right VM type

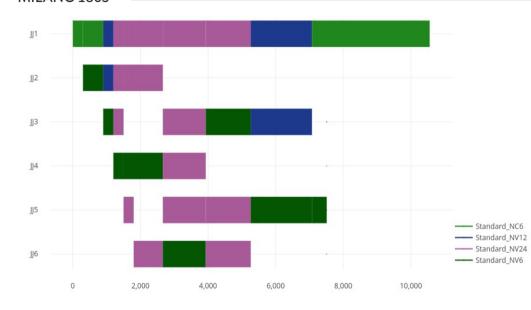




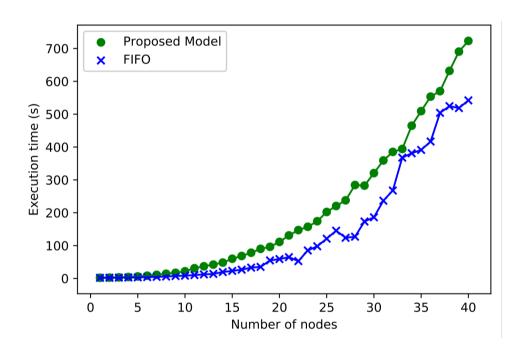
 (\mathcal{O})

Real systems and Scalability

MILANO 1863



Slot	Predicted cost	Real cost	
1	0.09	0.09	
2	0.39	0.39	
3	0.32	0.32	
4	0.53	0.53	
5	0.53	0.53	
6	1.54	1.88	
7	2.25	2.47	
8	2.83	2.39	
9	3.33	3.68	
10	1.28	1.37	
11	2.93	3.06	
sum	16.02	10.71	٦
Overall Difference		4.12%	



Conclusions and Future Work

- Performance models and online capacity planning and scheduling of DL training jobs
- Scheduler scalability
- Disaggregated hardware
- Edge systems and security trade-offs
- Integration of the performance models into the architecture search (e.g., AutoML with performance bounds)

Colleagues at Polimi, Università Milano Bicocca, IBM TJ Watson, and Tabriz University: Marco Lattuada, Eugenio Gianniti, Li Zhang, Arezoo Jahani, Federica Filippini, Michele Ciavotta, Edoardo Amaldi

<u>A</u>daptive, <u>T</u>rustworthy, <u>M</u>anageable, <u>O</u>rchestrated, <u>S</u>ecure, <u>P</u>rivacy-assuring <u>Hybrid</u>, <u>E</u>cosystem for <u>RE</u>silient Cloud Computing

• European and Brazilian Research Innovation Action project, within the H2020 program, in the field of Cloud Computing

