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1. Industrial context
The jet wiping process in galvanization

Final coating

Runback flow

§ Jet wiping is a coating technique used in photographic, paper and galvanization industries.
§ Liquid film dragged from a liquid bath by a substrate moving upwards.
§ A slot gas impinging jet is used to reduce and control the coating thickness, leading the
formation of two regions:

• Runback flow back to the bath.
• Final thin film flow.

Slot gas jet
‘’Air-knife’’

Zinc
Coating thickness
ℎ"~ 5 − 10 𝜇𝑚
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Liquid zinc
∼460∘C

1. Industrial context
The jet wiping process in galvanization

Hot-dip galvanization
550 process lines for over 100 millions 

of tons per year
[ZIC, Cominco ltd]

Contactless technique

Accurate control of process lines

ℎ" = 𝑓(𝑍, 𝑑, ∆𝑃4, 𝑈6, 𝜌8, 𝜇8)

ℎ"

Instability of the final coating film: Undulation

Degradation of the coating quality

Liquid zinc
∼460∘C

1. Industrial context
The jet wiping process in galvanization

Hot-dip galvanization
550 process lines for over 100 millions 

of tons per year
[ZIC, Cominco ltd]

Automotive Industry
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§ Process parameters
ü 𝑈: : substrate speed
ü 𝑍 : standoff distance of the jet
ü 𝑑 : nozzle slot opening
ü Δ𝑃4 : nozzle pressure

§ Fluid properties
ü 𝜌8, 𝜌< : density of liquid and gas
ü 𝜇8, 𝜇< : kinematic viscosity
ü 𝜎 : liquid surface tension

𝜏(𝑥) 𝑃(𝑥)

𝜕A𝑃 BCA

Wiping actuators

1. Industrial context
Physical mechanism

𝑥∗
Wiping point

1. Industrial context
State of the art

Different hypotheses for the origin of undulation:
§ Intrinsic hydrodynamic instability of the film [Tu & Ellen, 1986] [Hocking, 2011]
§ Substrate vibration [Gosset, 2007] [Peng, 2013]
§ Jet buckling instability [Yoon, 2010]
§ Gas jet- liquid film interaction [Gosset, 2007] [Myrillas, 2011]

• Jet bending due to a large recirculation close to the runback. [Pfeigel et al., 2017]
• Experimental characterization of the wave patterns. Gosset, Mendez, Buchlin (2019)
Exp Therm Fluid Sci 103:51-65.
• Time resolved analysis of the two-phase flow: pulsation of the runback flow,
unsteadily confining the wiping jet. Mendez, Gosset, Buchlin (2019) Exp Therm Fluid Sci
106:48-67.
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Assess the capability of high-fidelity simulations to reproduce the dynamics
of the jet wiping process:

§ Carry out an extended validation of two-phase CFD simulations with high
quality experimental data for the first time.
§ Understand the mechanism of undulation formation
§ Collect data for the further investigation of the problem with integral film
models.

§ Use of open source Finite Volume libraries OpenFoam v5.0

2. Objectives
Objectives of the present work
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𝜕𝛼
𝜕𝑡
+ ∇ I 𝛼𝒗 = 0

𝜙 = 𝜙8𝛼 + 𝜙<(1 − 𝛼)

Volume of Fluid (VOF)

𝛼 = 1 → liquid

𝛼 = 0 → gas
0 < 𝛼 < 1 → free surface

𝛼 : liquid volume fraction

α = 0

α
= 1

3. Numerical modeling and setup

𝜕𝜌
𝜕𝑡
+ ∇ I 𝜌𝒗 = 0

𝜕 𝜌𝒗
𝜕𝑡

+ ∇ I 𝜌𝒗𝒗 = −∇𝑝 + ∇ I 𝜏 + 𝜌𝑔 + 𝐹QR

One fluid, two-phase NSE

α = 0

α
= 1

𝐹QR = σ 𝜅 ∇𝛼

Equations of conservation

α
= 1

Turbulence filtering

Modelling of the
smaller scales

Large scales fully
resolved

Large Eddy Simulation
(LES)

3. Numerical modeling and setup
Turbulence modeling

𝐸(𝑘)

𝑘

Resolved

Modeled
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• ρ = 1023 kg.m-3

• μ = 0,0799 Pa.s

Liquid properties (Dipropylene glycol)

Gas properties (Air)
• ρ = 1,2 kg.m-3

• μ = 1,48.10-5 Pa.s

• σ = 0,032 N.m-1

W𝑍 = 𝑍/𝑑
𝑑 = 1.3 𝑚𝑚

3. Numerical modeling and setup
Test cases

𝑈: = 0.35 𝑚/𝑠

25 ≤ 𝑉_`R ≤ 37 𝑚/𝑠

3. Numerical modeling and setup
Discretization of the domain
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Numerical setup
• 3D VOF
• Solver: interFoam
• Smagorinsky LES (CS = 0,158)
• CFL = 0,96.
• Time: Euler
• Convective terms: Gauss linear.
• Gradient terms: Gauss linear.
• Diffusive terms: Gauss linear corrected

Computational cost
• Finisterrae II (CESGA).
• Tirant (UV).
• 288 cores.
• 10 – 12 M cells.
• 300 – 700 hours CPU / s of real flow.
• 275 GB of data / s of real flow.

3. Numerical modeling and setup
Solver parametrization

"Open-source Field Operation And 
Manipulation” 
C++ toolbox for the development of 
customized numerical solvers, and pre-
/post-processing utilities for the
solution of continuum mechanics
problems, including CFD
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https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Continuum_mechanics
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4. Results
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Plane of 
analysis

Flow visualization

6. Results
Gas jet characterization

Numerical Experimental

W𝑍 = 14.2
∆𝑃4 = 425 𝑃𝑎
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6. Results
Gas jet characterization

W𝑍 = 14.2
∆𝑃4 = 425 𝑃𝑎 ∆𝑃4 = 875 𝑃𝑎

6. Results
Gas jet characterization

W𝑍 = 14.2
∆𝑃4 = 425 𝑃𝑎
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4. Results
Liquid film characterization

Base test case

ℎ"

Time range for statistical analysis: 1 ≤ 𝑡 ≤ 3 𝑠
Sampling frequency: 1 𝑘𝐻𝑧

4. Results
Liquid film characterization

Spatio-temporal diagram of film
thickness.

W𝑍 = 14.2
∆𝑃4 = 425 𝑃𝑎

Signal auto-correlation in space
and time → Wave velocity

Final film

Runback
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4. Results
Liquid film characterization

Spatio-temporal diagram of film
thickness.

Power spectral density of the
thickness along the x axis.

ghℋ (𝑥, 𝑓

W𝑍 = 14.2
∆𝑃4 = 425 𝑃𝑎

4. Results
Liquid film characterization

𝑓 = 21.4 𝐻𝑧 → 𝜆 = 15.5 𝑚𝑚

Runback  𝑥 = −0.005 𝑚 Final film  𝑥 = 0.005 𝑚

W𝑍 = 14.2
∆𝑃4 = 425 𝑃𝑎

Frequency of jet oscillation! 
Mendez et al. (2019) Exp Therm Fluid Sci 
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4. Results
Liquid film characterization

∆𝑃4 ↑,
W𝑍 = 𝑐𝑡𝑒

Wave frequency too high
for full development → 
Merging

Frequency too high for
the film to reverse 
direction → Wave 
merging

4. Results
Liquid film characterization

𝑍/𝑑 = 14.2
∆𝑃4 = 875 𝑃𝑎

Runback  𝑥 = −0.005 𝑚 Final film  𝑥 = 0.005 𝑚
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4. Results

t = 0 s t = 0.015 s

Gas-liquid interaction

A

4. Results

t = 0.035 s

Gas-liquid interaction

A

B

t = 0.040 s

A

B
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§ 3D VOF-LES simulations are capable to predict reasonably well the
main characteristics of the gas and liquid flow in jet wiping.

§ Instability mechanism has been decrypted and confirms the
hypothesis of a robust coupling between the runback film and the gas jet.
European Coating Symposium 2019, Heidelberg.

§ The computational cost of these simulations makes it prohibitive for
industrial purpose.
• 300 – 700 hours CPU / s of real flow for dipropylene
• Difficulties in galvanization conditions: Lower coating thickness,

higher gas speed, high surface tension

5. Conclusions and perspectives

Zinc
ℎ"~ 5 − 10 𝜇𝑚

150 ≤ 𝑉_`R ≤ 200 𝑚/𝑠
1.5 ≤ 𝑈: ≤ 2.5 𝑚/𝑠

Dipropylene glycol
ℎ"~ 300 − 600 𝜇𝑚
20 ≤ 𝑉_`R ≤ 60 𝑚/𝑠
0.3 ≤ 𝑈: ≤ 0.5 𝑚/𝑠
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What remains to be done:
Advanced processing of the gas flow field with
multi-scale Proper Orthogonal Decomposition
(mPOD)

Mendez, Balabane, Buchlin (2019) JFM 870:988-1036.
Mendez, Gosset, Buchlin (2019), Exp Therm Fluid Sci
106:48-67.

5. Conclusions and perspectives

What remains to be done:
§ Formal validation of integral film
models, a potential alternative with ≈
105 lower computational cost.

§ Application to real galvanization
conditions.

5. Conclusions and perspectives

Integral film models
- One-way coupling

- 2D Formulation

Integral Boundary Layer 
Modeling

(Gravity, Surface 
Tension, Viscosity and 

Inertia)

Input:  Jet Dynamics
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