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Disclaimer!!

• On going project!!
• Not many (preliminary) results (yet)

• Some theory…

• Goals:
• Study the low temperature structure of intercalated V2O5

• Give theoretical support to the experimental node
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V2O5

• Novel Applications
• Optical: Phonon polaritons 

(light coupled to optical phonons)

• Confine light

• Nanolasers

• Infrared detectors

• Molecular sensors

• …

Nature 562, 557 (2018)

• Basically no tuning
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V2O5

• Structure
• Orthorhombic structure

• Inequivalent O positions     Asymmetric bonds 

• van der Waals material

• It can be easily doped (Na, Ca, Li)



V2O5 - doping

• Novel Applications
• Optoelectronic: Phonon polaritons 

(light coupled to optical phonons)

• Confine light

• Nanolasers

• Infrared detectors

• Molecular sensors

• …

Nature 562, 557 (2018)

• Some tuning

Nature Materials 

19, 964 (2020)
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NaV2O5

• Structure
• Lowering the temperature                Structural transition 

J. Phys. Soc. Jpn. 71, 385 (2002).
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Solid State Communications 112, 397 (1999)
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Phys. Rev. Lett. 82, 3633 (1999)
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Phys. Rev. Lett. 84, 3962 (2000)
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How?

• Condensed matter problem



How? 

• Approximations
• Born-Oppenheimer (adiabatic) approximation:

• The mass of the electron is much smaller than that of the nuclei (me- <<< mn)



How?

• Density Functional Theory
• Theory to handle correlated many body problems

• Hohenberg-Kohn theorems:
• Any property of the ground state system can be described as a functional of the 

ground state electron density

• We transform our 3N variable problem to a 3 variable problem with the electron 
density! 

• Kohn-Sham approach: Made the theory useful
• Auxiliary non-interacting system

• Group all many-body effects in an exchange-correlation potential (Vxc)

• LDA

• GGA

• …

Image taken from
@shedka (Twitter)
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• Phonons
• Born-Oppenheimer approximation: Still a many body problem.

• The atoms will have small displacements from their equilibrium position 
compared to the interatomic distances.

• Born-Oppenheimer potential:

• Harmonic approximation + Classical atomic forces: Newton equation!

• Calculation of the force constants:
• By “finite displacements” (i.e. Siesta).

• By “perturbation methods” (i.e. Quantum-Espresso).

Atoms = Quantum particles Temperature



Typical approach

• Electronic calculation
• Optimization of the comp. parameters (40 calculations max)

• Energy cutoff: 140.0 Ry

• K-points: 16×6×15

• Optimization of the lattice and the atom’s position (1 calculation)

• Electronic band structure, DOS …

• Phonon calculation 
• The electronic calculation has to be very well converged (forces)

• q-points: 2×1×2  (4 calculations, each q can be calculated separately)

• Total comp. time: 55 Khours (each q ~ 9 days).
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• Phonons beyond the harmonic approximation:
•

• The BO potential is still a many body problem.

• Method to incorporate ionic quantum and anharmonic effects without 
approximating V(R).

How? 
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• Phonons beyond the harmonic approximation:
•

• The BO potential is still a many body problem.

• Method to incorporate ionic quantum and anharmonic effects without 
approximating V(R).

• Variational principle:

• Quantum and thermal fluctuations of ions.

• Stochastic nature: Monte Carlo evaluations. 

How? 

J. Phys.: Condens. Matter 33, 363001 (2021) 

Introduction to the Theory of Lattice Vibrations and their Ab Initio Calculation 
https://cfm.ehu.es/errealab/teaching/

sscha.eu



How? 

Adapted from: Introduction to the Theory of Lattice Vibrations and their Ab Initio Calculation 
https://cfm.ehu.es/errealab/teaching/

sscha.eu



Details

• 2x1x2 supercell (64 atoms)
• Around 900 structures

• Energy cutoff: 140.0 Ry

• K-points: 8×6×8

• 48 processors (high-memory nodes) – 16 hours

• Total comp. time: 700 Khours.

sscha.eu

For each temperature!



Results

T=300 K Harmonic



Conclusions & outlook

• NaV2O5 is an interesting material for theory and experiment

• Harmonic calculations are relatively easy to perform.

• In order to calculate the temperature dependence of the system 
we need to go beyond the harmonic approximation.

• SSCHA is a very complete method, but very demanding 

• We need an HPC facility to perform these calculations

• Soon (before the end of this activity):
• Phonon dependence with temperature (finishing the calculations a.t.m.)

• Most stable structure at low temperatures
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