JURES 2022

Precise characterization of low temperature structures of vanadium oxides

Jose Angel Silva Guillén

joseangel.silva@imdea.org

- Non-profit Foundation funded by the regional Government of Madrid and the Ministry of Science and Education of Spain in 2008
- Severo Ochoa Center of Excellence
- 210 researchers 34.5 years average age
- Annual expenditure > 11M€ (65% of the budget from external competitive sources)

Secure, clean and efficient energy

P1: Multifuctional Nanomaterials, Energy Harvesting, Catalysis, Sensors & Devices P5: Ultrafast time-resolved spectroscopies Health, demographic change & wellbeing

P3: Nanomedicine for Neurological, Oncological & Infection deseases

P7: Technology Translational Platform

P4: Nanomagentism & spin-resoved spectroscopy

P6: Critical Raw Materials & processes

P2: Fundamental properties of 2D Materials and Quantum Devices

Climate action & raw materials

Security

Adapted from Dr. Manuela Garnica

THEORY

Víctor M. García Suárez

EXPERIMENT

Pablo Alonso González

Javier Martín Sánchez

THEORY

Víctor M. García Suárez

EXPERIMENT

Pablo Alonso González

Javier Martín Sánchez

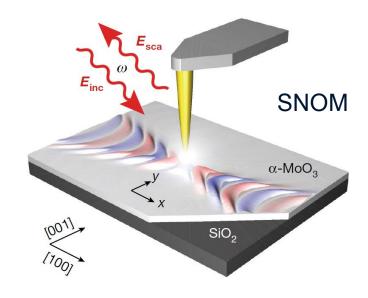
Disclaimer!!

- On going project!!
 - Not many (preliminary) results (yet)
 - Some theory...
- Goals:
 - Study the low temperature structure of intercalated V₂O₅
 - Give theoretical support to the experimental node

- Applications
 - Sensors
 - Photocatalysts
 - Electrochromic devices
 - Lithium-ion batteries

- Low cost
- Abundance

- Applications
 - Sensors
 - Photocatalysts
 - Electrochromic devices
 - Lithium-ion batteries
- Novel Applications
 - Optical: Phonon polaritons


- Low cost
- Abundance

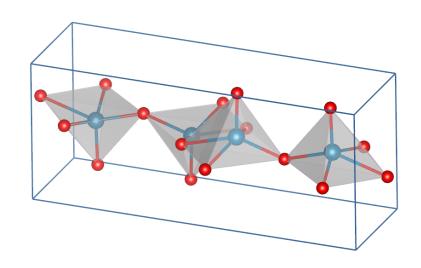
- Novel Applications
 - Optical: Phonon polaritons

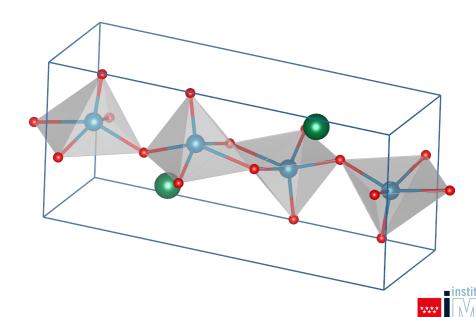
(light coupled to optical phonons)

a

Nature **562**, 557 (2018)

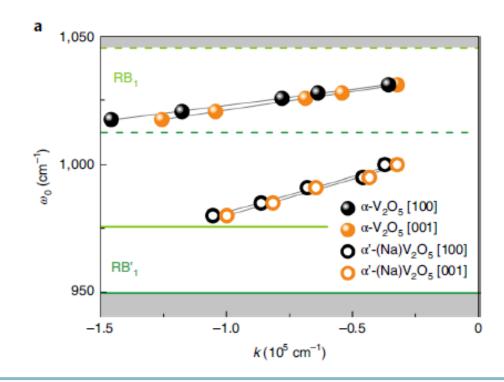
- Confine light
- Nanolasers
- Infrared detectors
- Molecular sensors


• ...


Basically no tuning

Structure

- Orthorhombic structure
- Inequivalent O positions → Asymmetric bonds
- van der Waals material
- It can be easily doped (Na, Ca, Li)

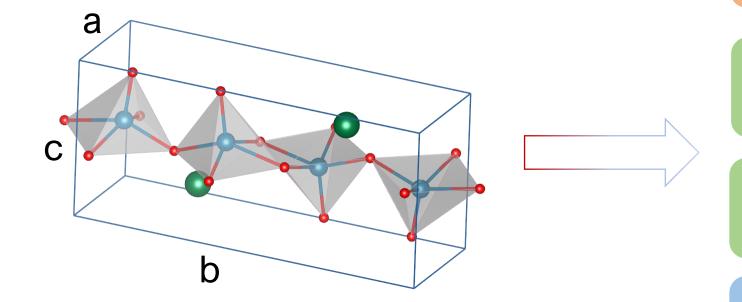

V₂O₅ - doping

a

- Novel Applications
 - Optoelectronic: Phonon polaritons (light coupled to optical phonons)

- Confine light
- Nanolasers
- Infrared detectors
- Molecular sensors
- ...
- Some tuning

Nature **562**, 557 (2018)



Nature Materials **19**, 964 (2020)

NaV₂O₅

- Structure
 - Lowering the temperature ——— Structural transition

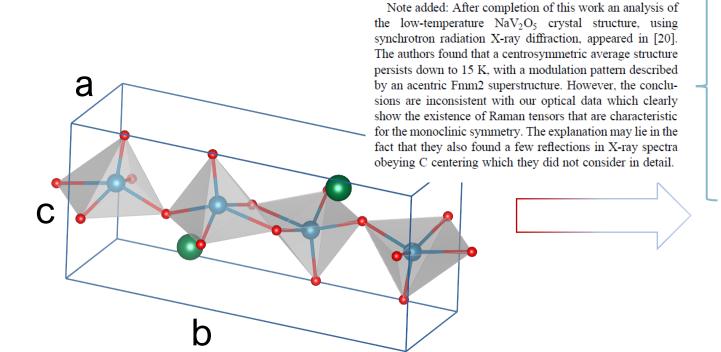
Solid State Communications **112**, 397 (1999)

Monoclinic P2/b

2a×2b×4c

Phys. Rev. Lett. **82**, 3633 (1999) Orthorhombic Fmm2 2a×2b×4c

Phys. Rev. Lett. **84**, 3962 (2000) Orthorhombic Fmm2 2a×2b×4c


J. Phys. Soc. Jpn. **71**, 385 (2002).

Monoclinic A112

(a - b)×2b×4c.

NaV_2O_5

- Structure
 - Lowering the temperature ——— Structural transition

Solid State Communications **112**, 397 (1999)

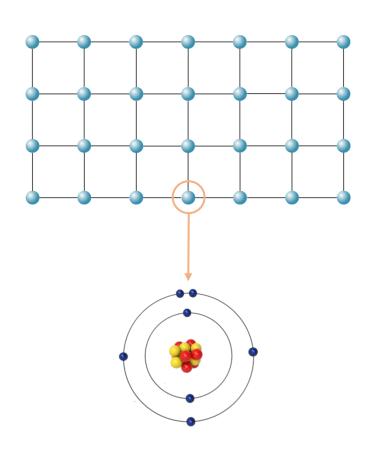
Monoclinic P2/b

2a×2b×4c

Phys. Rev. Lett. **82**, 3633 (1999) Orthorhombic Fmm2 2a×2b×4c

Phys. Rev. Lett. **84**, 3962 (2000) Orthorhombic Fmm2 2a×2b×4c

J. Phys. Soc. Jpn. **71**, 385 (2002).


Monoclinic A112

(a-b)×2b×4c.

Condensed matter problem

$$\hat{H}\Psi = E\Psi$$

$$\hat{H} = \hat{T}_e + \hat{T}_N + \hat{V}_{Ne} + \hat{V}_{ee} + \hat{V}_{NN} + V_{ext}$$

Approximations

- Born-Oppenheimer (adiabatic) approximation:
 - The mass of the electron is much smaller than that of the nuclei (m_{e-} <<< m_n)

$$\hat{H}\Psi = E\Psi$$

$$\hat{H} = \hat{T}_e + \hat{T}_N + \hat{V}_{Ne} + \hat{V}_{ee} + \hat{V}_{NN} + V_{ext}$$

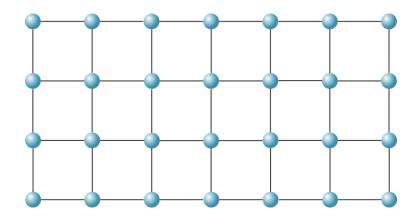
$$\hat{H}_e = \hat{T}_e + \hat{V}_{Ne} + \hat{V}_{ee} + V_{ext}$$

$$\hat{H}_e\Phi_i\left(\mathbf{r},\mathbf{R}\right) = E_i\left[\mathbf{R}\right]\Phi_i\left(\mathbf{r},\mathbf{R}\right)$$

$$\left[\hat{T}_{N} + \hat{V}_{NN} + E_{e_{i}}\left[\mathbf{R}\right]\right] \varphi_{ni}\left(\mathbf{R}\right) = E_{ni}\varphi_{ni}\left(\mathbf{R}\right)$$

$$\hat{H}_e\Phi_i\left(\mathbf{r},\mathbf{R}\right) = E_i\left[\mathbf{R}\right]\Phi_i\left(\mathbf{r},\mathbf{R}\right)$$

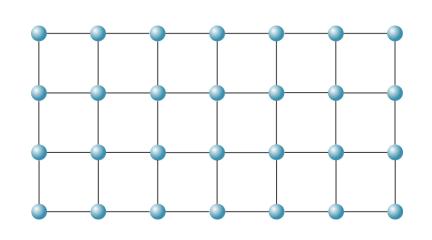
- Density Functional Theory
 - Theory to handle correlated many body problems
 - Hohenberg-Kohn theorems:
 - Any property of the ground state system can be described as a functional of the ground state electron density
 - We transform our <u>3N variable problem</u> to a <u>3 variable problem</u> with the electron density!
 - Kohn-Sham approach: Made the theory useful
 - Auxiliary non-interacting system
 - Group all many-body effects in an exchange-correlation potential (V_{xc})
 - LDA
 - GGA
 - ...

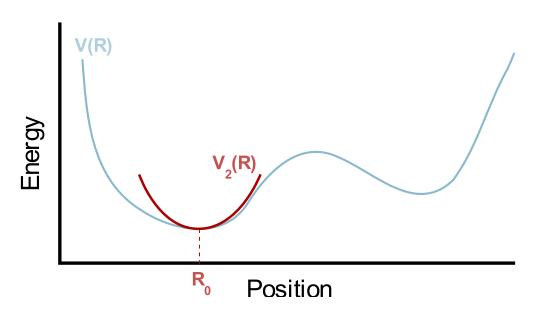


$$\left[\hat{T}_{N} + \hat{V}_{NN} + E_{e_{i}} \left[\mathbf{R}\right]\right] \varphi_{ni} \left(\mathbf{R}\right) = E_{ni} \varphi_{ni} \left(\mathbf{R}\right)$$

$$V(\mathbf{R})$$

- Born-Oppenheimer approximation: Still a many body problem.
- The atoms will have small displacements from their equilibrium position compared to the interatomic distances.
- Born-Oppenheimer potential: $V(\mathbf{R})=V(\mathbf{R_0})+V_1(\mathbf{R})+V_2(\mathbf{R})+V_3(\mathbf{R})+V_4(\mathbf{R})+...$





$$\left[\hat{T}_{N} + \hat{V}_{NN} + E_{e_{i}} \left[\mathbf{R}\right]\right] \varphi_{ni} \left(\mathbf{R}\right) = E_{ni} \varphi_{ni} \left(\mathbf{R}\right)$$

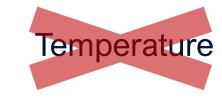
$$V(\mathbf{R})$$

- Born-Oppenheimer approximation: Still a many body problem.
- The atoms will have small displacements from their equilibrium position compared to the interatomic distances.
- Born-Oppenheimer potential: $V(\mathbf{R}) = V(\mathbf{R_0}) + V_1(\mathbf{R}) + V_2(\mathbf{R}) + V_3(\mathbf{R}) + V_4(\mathbf{R}) + \dots$
- Harmonic approximation + Classical atomic forces: Newton equation!

$$\left[\hat{T}_{N} + \hat{V}_{NN} + E_{e_{i}}\left[\mathbf{R}\right]\right] \varphi_{ni}\left(\mathbf{R}\right) = E_{ni}\varphi_{ni}\left(\mathbf{R}\right)$$

$$V(\mathbf{R})$$

- Born-Oppenheimer approximation: Still a many body problem.
- The atoms will have small displacements from their equilibrium position compared to the interatomic distances.
- Born-Oppenheimer potential: $V(\mathbf{R}) = V(\mathbf{R_0}) + V_1(\mathbf{R}) + V_2(\mathbf{R}) + V_3(\mathbf{R}) + V_4(\mathbf{R}) + \dots$
- Harmonic approximation + Classical atomic forces: Newton equation!
- Calculation of the force constants:
 - By "finite displacements" (i.e. Siesta).
 - By "perturbation methods" (i.e. Quantum-Espresso).

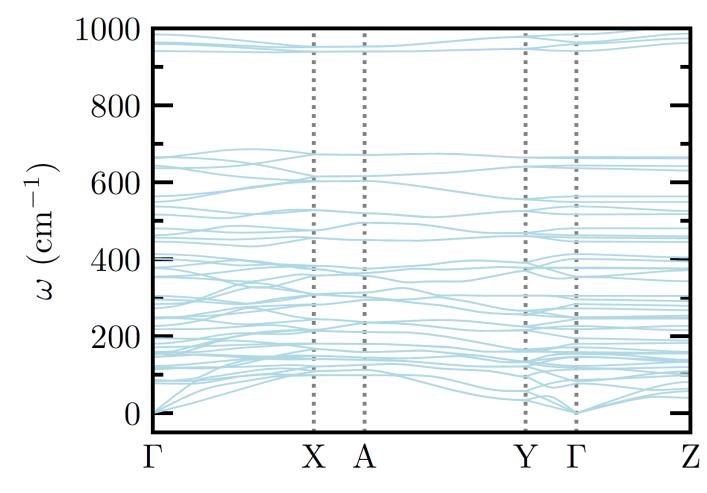


$$\left[\hat{T}_{N} + \hat{V}_{NN} + E_{e_{i}} \left[\mathbf{R}\right]\right] \varphi_{ni} \left(\mathbf{R}\right) = E_{ni} \varphi_{ni} \left(\mathbf{R}\right)$$

$$V(\mathbf{R})$$

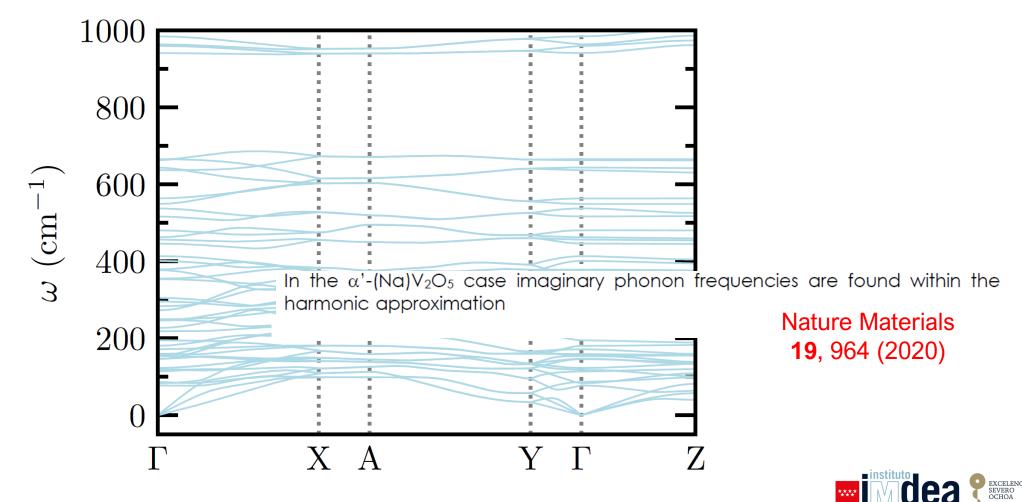
- Born-Oppenheimer approximation: Still a many body problem.
- The atoms will have small displacements from their equilibrium position compared to the interatomic distances.
- Born-Oppenheimer potential: $V(\mathbf{R}) = V(\mathbf{R_0}) + V_1(\mathbf{R}) + V_2(\mathbf{R}) + V_3(\mathbf{R}) + V_4(\mathbf{R}) + \dots$
- Harmonic approximation + Classical atomic forces: Newton equation!
- Calculation of the force constants:
 - By "finite displacements" (i.e. Siesta).
 - By "perturbation methods" (i.e. Quantum-Espresso).

Typical approach

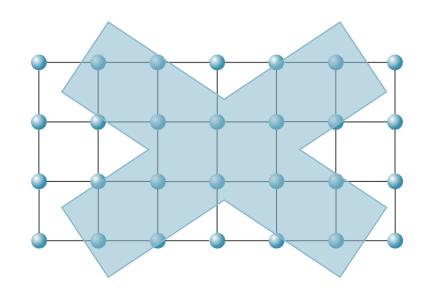


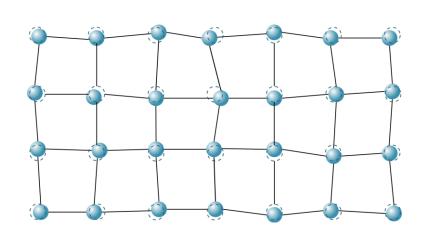
- Electronic calculation
 - Optimization of the comp. parameters (40 calculations max)
 - Energy cutoff: 140.0 Ry
 - K-points: 16×6×15
 - Optimization of the lattice and the atom's position (1 calculation)
 - Electronic band structure, DOS ...
- Phonon calculation
 - The electronic calculation has to be very well converged (forces)
 - q-points: 2×1×2 (4 calculations, each q can be calculated separately)
- Total comp. time: 55 Khours (each q ~ 9 days).

Typical approach



Typical approach

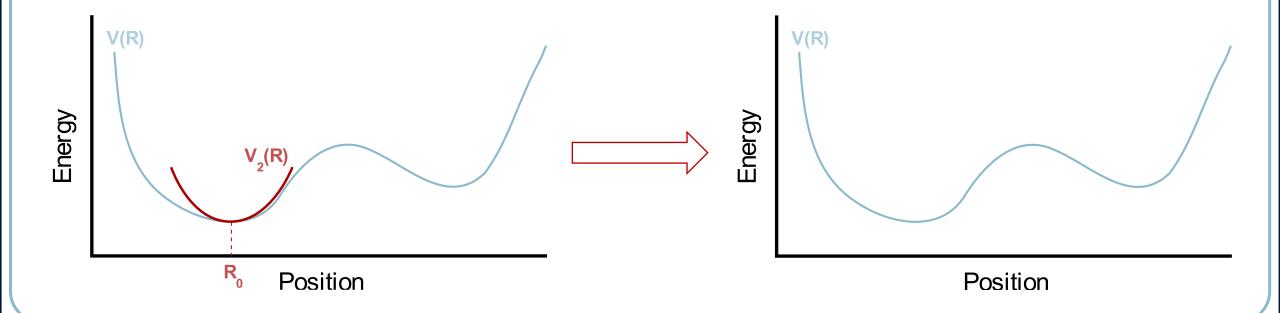




$$\left[\hat{T}_{N} + \hat{V}_{NN} + E_{e_{i}} \left[\mathbf{R}\right]\right] \varphi_{ni} \left(\mathbf{R}\right) = E_{ni} \varphi_{ni} \left(\mathbf{R}\right)$$

$$V(\mathbf{R})$$

- Born-Oppenheimer approximation: Still a many body problem.
- The atoms will have small displacements from their equilibrium position compared to the interatomic distances.
- Born-Oppenheimer potential: $V(\mathbf{R}) = V(\mathbf{R_0}) + V_1(\mathbf{R}) + V_2(\mathbf{R}) + V_3(\mathbf{R}) + V_4(\mathbf{R}) + \dots$
- Harmonic approximation + Classical atomic forces: Newton equation!


Phonons beyond the harmonic approximation:

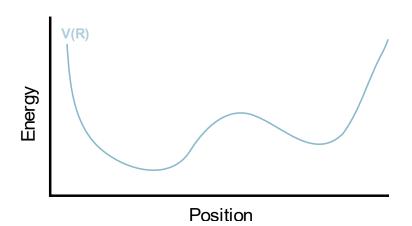
•
$$\left[\hat{T}_N + \hat{V}_{NN} + E_{e_i} \left[\mathbf{R}\right]\right] \varphi_{ni} \left(\mathbf{R}\right) = E_{ni} \varphi_{ni} \left(\mathbf{R}\right)$$

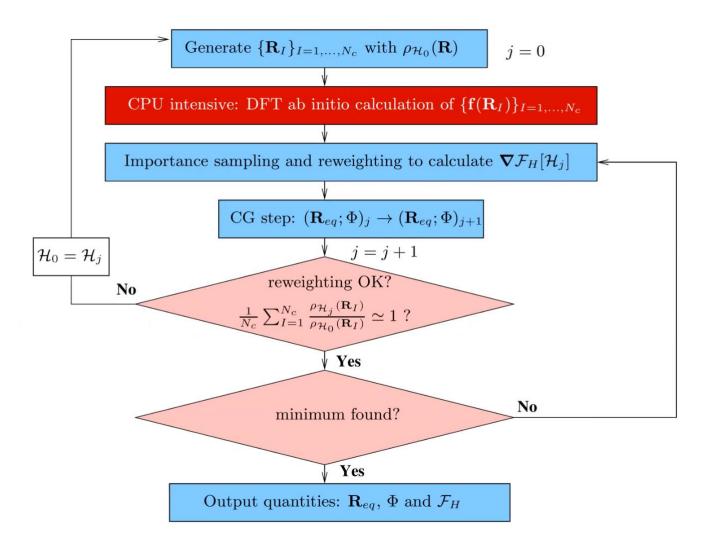
$$V(\mathbf{R})$$

- The BO potential is still a many body problem.
- Method to incorporate ionic quantum and anharmonic effects without approximating V(R).

Phonons beyond the harmonic approximation:

•
$$\left[\hat{T}_N + \hat{V}_{NN} + E_{e_i} \left[\mathbf{R}\right]\right] \varphi_{ni} \left(\mathbf{R}\right) = E_{ni} \varphi_{ni} \left(\mathbf{R}\right)$$


$$V(\mathbf{R})$$

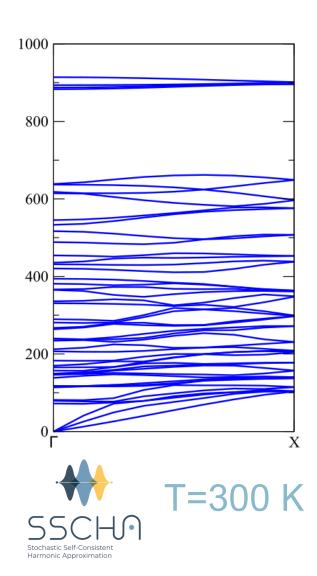


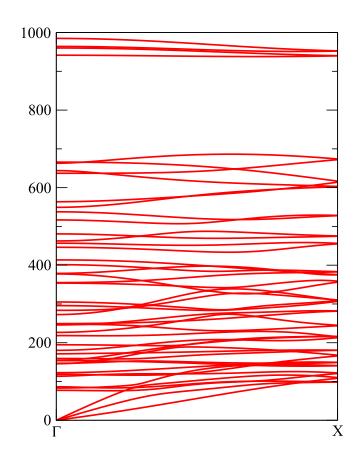
- The BO potential is still a many body problem.
- Method to incorporate ionic quantum and anharmonic effects without approximating V(R).
- Variational principle: $\mathcal{F}[\rho] = \langle T_i + V \rangle_{\rho} TS[\rho] \geq F$
- Quantum and thermal fluctuations of ions.
- Stochastic nature: Monte Carlo evaluations.

J. Phys.: Condens. Matter **33**, 363001 (2021)

Introduction to the Theory of Lattice Vibrations and their Ab Initio Calculation https://cfm.ehu.es/errealab/teaching/

Details


- 2x1x2 supercell (64 atoms)
 - Around 900 structures
 - Energy cutoff: 140.0 Ry
 - K-points: 8×6×8
 - 48 processors (high-memory nodes) 16 hours
- Total comp. time: 700 Khours.


For each temperature!

Results

Harmonic

Conclusions & outlook

- NaV₂O₅ is an interesting material for theory and experiment
- Harmonic calculations are relatively easy to perform.
- In order to calculate the temperature dependence of the system we need to go beyond the harmonic approximation.
- SSCHA is a very complete method, but very demanding
- We need an HPC facility to perform these calculations
- Soon (before the end of this activity):
 - Phonon dependence with temperature (finishing the calculations a.t.m.)
 - Most stable structure at low temperatures

Thanks to...

and...
you for your attention!