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Cluster Stability

Eb =
1

N
[E(PtnGem)−nE(Pt)−mE(Ge)];N = n+m
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Ge/PtMixing

∆ = E(PtnGem)−n
E(PtN)

N
−m

E(GeN)
N

; N=n+m
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What about Catalytic Activity?

First step in Hydrogen Oxidation
Reaction: H2 −−→ 2 Had

Larger Ge content → BE[2H] ↓
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Calculations Details Pt +
n and GePt +

n clusters

Global minima search of CO−Pt +
n / CO−GePt +

n-1
(n = 5–9)

▶ Turbomole (DODO)
▶ TPSSH-D3/def2-TZVP

▶ PGOPT/VASP PBE-D3
▶ cutoff: 450 eV
▶ SCF convergence 10−6

eV.
▶ The unit cell 15×15×25Å

▶ Final Energies and all analysis with LC-�PBEh/def2-TZVP
using GAUSSIAN.

Calculations run on local computers

32 / 39



Calculations Details Playing with the dopant concentration

▶ PGOPT/VASP PBE-D3
▶ cutoff: 450 eV
▶ (SCF) convergence 10−6 eV.
▶ The unit cell 15×15×25Å

Largest clusters (around 10x800 structures) in BSC (48 cores
24 hours)

33 / 39



Calculations Details What about Catalytic Activity?

First step in Hydrogen Oxidation Reaction: H2 −−→ 2 Had

▶ PGOPT/VASP PBE-D3
▶ cutoff: 450 eV
▶ (SCF) convergence 10−6 eV.
▶ The unit cell :15×15×25Å
▶ Climbing image nudged elastic band (CI-NEB)
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Calculations Details PtGe on defected graphene

▶ Pt4 and Pt2Ge2 on 5-8-5-DV 14.81 × 17.10 × 20.0 Å
supercell (94 C atoms) + CO

▶ Pt10 and Pt5Ge5 + CO 17.28 × 21.38 × 20.0 Å supercell
(138 C atoms) was required

Largest clusters (around 10x800 structures) in BSC (96 cores
24 hours)
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