

Playing with Quantum Computing without Quantum Computers

16th USERS CONFERENCE - RES

15/09/2022

Elisabeth Ortega-Carrasco, PhD. R&D Manager

www.hpcnow.com

Services and turnkey solutions adapted to your needs

Planning

Consulting

Solution design

Installation

Infrastructure

Software

Training

Maintenance

Support

Managec services

Quantum Computer by definition

A quantum computer is...

... built using the laws of quantum mechanics.

Richard P. Feynman, (1985).

Optics News.

... a hypothetical machine that uses principles of quantum mechanics for their basic operations

Peter W. Shor, (1998).

Documenta Mathematica. 467-486

... a device that directly exploits quantum mechanical phenomena to perform a calculation.

Mikael P. Johansson, (2021).

Quantum Computing - A European Perspective. PRACE

• By architecture:

Annealers

Simulators

Universal

By architecture:

Annealers Simulators Universal

By physical properties:

Superconductors Trapped ions Photons Defect qubits etc

By architecture:

Annealers Simulators Universal

By physical properties:

Superconductors Trapped ions Photons Defect qubits etc

By computational model::

Digital gate-based Digital one-way Analog simulators Annealers

By architecture:

Annealers Simulators Universal

By physical properties:

Superconductors Trapped ions Photons Defect qubits etc

By computational model::

> ^{… and} many more

Quantum computing without (too much) extra investment

Some quantum emulators (or simulators...)

https://thequantuminsider.com/2022/06/14/top-63-quantum-computer-simulators-for-2022/

Qiskit https://qiskit.org/ IBM Python

myQLM (community version of QLM) https://atos.net/en/lp/myqlm Atos Python

Quantum Exact Simulation Toolkit https://quest.qtechtheory.org/ University of Oxford C/C++

Pennylane https://pennylane.ai/ Xanadu Python

Option 1: using your laptop

pip install qiskit

Option 1: using your laptop

pip install qiskit

```
from qiskit import QuantumCircuit, assemble, Aer
from qiskit.visualization import plot histogram
# create quantum circuit
qc = QuantumCircuit(1)
                                # 1 quantum register, 1 classical register
qc.x(0)
                                # add a gate to the circuit
                                # add measurement at the end
qc.measure all()
# run
sim = Aer.get backend('aer simulator')
qobj = assemble(qc)
                                # Assemble a list of circuits or pulse schedules into a Qobj
result = sim.run(qobj).result() # run circuit, get results
# output statistics
counts = result.get counts()
                                # extract statistics from results
print(counts)
```


Option 2: using your cluster

pip install qiskit

Option 2: using your cluster

\$ eb Qiskit-0.31.0-foss-2021a.eb --robot

\$ [easybuild stuff]

\$ module load Qiskit-0.31.0-foss-2021a

Example with 10 qubits

2¹⁰ states x 8 bytes = **9 KB**

Example with 53 qubits:

²⁵³ states x 8 bytes = **72 PB**

Memory needed to store "n" bits: n bits

Memory needed to store "n" bits: n bits

WORST CASE SCENARIO

Memory needed to store "n" qubits: 2ⁿ x 8 bytes

Memory needed to store "n" bits: n bits

WORST CASE SCENARIO

Memory needed to store "n" qubits: 2ⁿ x 8 bytes

$$|a
angle = a_{00}|00
angle + a_{01}|01
angle + a_{10}|10
angle + a_{11}|11
angle = egin{array}{c} a_{00} \ a_{01} \ a_{10} \ a_{11} \end{array}$$

Memory needed to store "n" bits: n bits

WORST CASE

Memory needed to store "n" qubits: 2ⁿ x 8 bytes

$$|a\rangle=a_{00}|00
angle+a_{01}|01
angle+a_{10}|10
angle+a_{11}|11
angle=egin{bmatrix} a_{00}\a_{01}\a_{10}\a_{11} \end{bmatrix}$$
 complex float

Memory needed to store "n" bits: n bits

WORST CASE SCENARIO

Memory needed to store "n" qubits: 2ⁿ x 8 bytes

$$|a\rangle=a_{00}|00\rangle+a_{01}|01\rangle+a_{10}|10\rangle+a_{11}|11\rangle=egin{bmatrix} a_{00}\ a_{01}\ a_{10}\ a_{11} \end{bmatrix}$$
 complex float

Memory requirements

Example with 10 qubits:

2¹⁰ states x 8 bytes = **9 KB**

Example with 53 qubits:

2⁵³ states x 8 bytes = **72 PB**

Quantum computing cloud resources

Vendors

IBM Quantum

https://quantum-computing.ibm.com/

Public efforts to provide quantum technology to the general public

High Performance Computer – Quantum Simulator hybrid. Integrate two simulators and deploy an European HPC-QS infrastructure to provide a non-commercial cloud access to European users. https://www.hpcqs.eu/

Boost the Spanish quantum infrastructure. It will provide one quantum computer and three simulators to the RES, support to develop software and training. https://quantumspain-project.es/

- Quantum technology is a vivid field.
- Quantum computing is not (so) accessible yet, but there are quite solutions to start experimenting with.

• In the next years, some quantum computing devices will be available for the public (at least in Spain/Europe).

We are hiring now!

Open positions

- SysOps Engineer (NZ)
- Linux Systems Administrator (NZ)
- SysOps Engineer (EMEA)

Thank you for your attention

elisabeth.ortega@hpcnow.com

