
Evolving COMPSs to embrace theCompute Continuum
Francesc Lordan

15/09/2022 - Cáceres 16th Users Conference

COMP Superscalar (COMPSs) http://compss.bsc.eshttps://compss.readthedocs.io

• Programming model for distributed computing
• Sequential programming
• Agnostic of the computing infrastructure
• General purpose programming language

• At runtime, an intelligent engine
• Identifies tasks with dependencies and builds a workflow
• discover the implicit parallelism
• distributes the workload

• Tasks => function invocation
• Code annotations/hints

@task()def increment(counterFile) :// Parse the content of a file and increment the value…
def main():increment(counter1)increment(counter2)increment(counter3)printCounters(counter1, counter2, counter3);

http://compss.bsc.es/
https://compss.readthedocs.io/
https://compss.readthedocs.io/
https://compss.readthedocs.io/

Workflow Managers’ Traditional Approach
• The infrastructure is stable (except for sporadic network disruptions)

• May scale-in/out depending on the workload in a controlled manner

• There is a single instance of the application running
• 1 node (master) decomposes the application and spawns tasks
• The master is aware of the whole infrastructure and orchestrates the execution of the tasks

• Schedules task executions on the available resources
• Runs tasks on the local resources
• Submits the task execution to the remote nodes

• Orders data transfers

Compute Continuum

Compute Continuum
Three computation scenarios:

• Sense-process-actuate
• Stream processing
• Batch jobs

Compute Continuum’s Approach
• The infrastructure is dynamic because of mobile devices
• There are several requests of the same service running at a time
• Any node of the infrastructure may trigger a code execution and generate workload
• The execution of tasks is a shared responsability

• Schedules task executions on the available resources
• Share data

Solution overview
• Computation triggered at any node of the infrastructure Standalone devices (agents)
• Multiple requests at a time  Functions-as-a-Service
• Hardware heterogeneity  Serverless functions
• Software heterogeneity and device multi-tenancy  Virtualized environments
• Resource exploitation  Convert functions into task-based workflows
• Application development complexity  Single Programming Model

Resource hierarchies
Agents organize resembling organic colonies

• Each member is an autonomous individual capable ofprocessing information
• Members offer the colony their embedded resources to runfunctions in a serverless, stateless manner
• Members receive a platform where to offload computation

Colonies can be divided recursively forming hierarchies
Each colony selects one node to act as

• Nexus
• Interaction gateway to the Colony

Hierarchy Malleability

Preliminary Results - Classification Service(sense-process-actuate scenario)
10 users

100 users

300 users

Avg. Response time
104 ms

Avg. Response time
104 ms

Avg. Response time
109 ms

Preliminary Results - Classification Service(batch processing scenario)

Projects where this technology is being applied

• Personalised alerts andrecommendation system for airportpassengers
• Mask detection (Image processing)
• AF detection (eHealth)

• GeoSpatial Decision Support system

Open Challenges
• Agent Deployment
• Resource discovery and hierarchy setup
• Scheduling policies

• QoS-based for real-time
• Data Management

• IP, privacy
• Integration with data sharing mechanisms (currently, support for Hecuba and dataClay)

• Eventing: data triggers computation
• Monitoring changes on storage services (MINIO - UPV)
• Monitoring resources
• External services such as IFTTT
• Notifications from publish-subscribe system

francesc.lordan@bsc.es
For further information about the project:

Tools by WDC group

Computing Infrastructure

Runtimesystem

Programming Model:High-level, clean, abstract interface

Computedistribution

Applications / Services

Datamanagement

Libraries:Collection of methods

Device-Edge-Cloud Infrastructures
3 types of elements composing the system:

Sensors (Events Detectors/Data Generators)elements monitorizing certain condition and informing about itContinuosly generating information  Streams of dataEventually notifying a change  Events

Computing and Storage elementselements within the infrastructure with ability to process and transform information

Actuatorselements on which the platform realizes actions (changing its state)

Programming model example (Python)
class Simple(object):

@task(counterFile = FILE_INOUT)def increment(counterFile) :// Parse the content of a file and increment the value…
def main():for i in range(3) :increment(counter1)increment(counter2)increment(counter3)
printCounters(counter1, counter2, counter3);

counter1 counter2 counter3
1stiteration

2nd iteration

3rd iteration

Task types (Python)

@mpi(processes=4, processes_per_node=2)@task()def layout_test_with_all():from mpi4py import MPIrank = MPI.COMM_WORLD.rankreturn rank

@binary(binary="mybinary.bin")@task()def binary_func():pass
@constraint(computingUnits="2")@binary(binary="otherbinary.bin")@task()def binary_func2():pass

from pycompss.api.implement import implement
@implement(source_class="sourcemodule", method="main_func")@constraint(app_software="numpy")@task(returns= list)def myfunctionWithNumpy(list1, list2):# Operate with the lists using numpyreturn resultList
@task(returns=list)def main_func(list1, list2):# Operate with the lists using built-in functionsreturn resultList

Constraints (Python)
@constraint(computing_units="4")@task(c=INOUT)def func(a, b, c):c += a * b...

@constraint(computing_units="4",app_software="numpy,scipy,gnuplot",memory_size="$MIN_MEM_REQ")@task(c=INOUT)def func(a, b, c):c += a * b...

@constraint(processors=[{'processorType':'CPU', 'computingUnits':'1'},{'processorType':'GPU', 'computingUnits':'1'}])@task(returns=1)def func(a, b, c):...return result

Programming model example (Java)
public class Simple {
public static void increment(String counterFile) {// Parse the content of a file and increment the value…}
public static void main(String[] args) {for (i = 0; i < 3; i++) {increment(counter1);increment(counter2);increment(counter3);}printCounters(counter1, counter2, counter3);}}

public interface SimpleItf {
@Method(declaringClass = “es.bsc.Simple")void increment(@Parameter(type = FILE, direction = INOUT)String counterFile);

}

Parametermetadata

Implementation

counter1 counter2 counter3
1stiteration

2nd iteration

3rd iteration

Resource 1
...
for (i=0; i<N; i++){

T1 (data1, data2);
T2 (data4, data5);
T3 (data2, data5, data6);
T4 (data7, data8);
T5 (data6, data8, data9);

}
...

Sequential Code

T10 T20

T30 T40

T50 T11 T21

T31 T41

T51

T12

…

(c) Submission,data transfers,
task execution

(d) Task completion,synchronization

(a) Task selection +parameters direction
(input, output, inout) ‏

Resource 2

Resource N
. . . ‏

(b) Task graph creationbased on data
dependencies

Programming model runtime: summary

Constraints (Java)

public interface SimpleItf {
@Method(declaringClass = “Simple")void increment(@Constraints(computingUnits = 4, processorArchitecture = RISC-V)@Parameter(type = FILE, direction = INOUT)String counterFile);

}

• Allow the application developer to exploit system’s heterogeneity
• Specifying:

• Processor
• Number of computing units (cores)
• Architecture
• Type

• Memory
• Size

• Storage
• Disk Size
• Bandwith

• Operating System
• Installed Software

Preliminary Results – Real-time Video Processing(stream processing scenario)

• rPi alone:
1 frame each 41 seconds
Frame rate: 0,024 fps

• Colony:
rPi: 1 frame 353 ms
Frame rate: 2,79 fps

Standalone Agent
Even when isolated, each device must be able to:

• Start a function execution
• Convert it into a workflow
• Run on top of its local resources

• CPU, GPU, accelerator, FPGA
Runtime system

Agent API

App /Servicecode
CPU GPU Acc

Execution Engine

TaskSched DataMgrResMgr

Agents interaction
Agents can offload part of the computation onto other agents by adding them onto their resource pool

Runtime system
Agent API

App /Servicecode
CPU GPU Acc

Execution Engine

TaskSched DataMgrResMgr

RemoteAgent

Runtime system
Agent API

App /Servicecode
CPU GPU Acc

Execution Engine

TaskSched DataMgrResMgr

RemoteAgent

