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Compact binaries within the reach of current ground-based detectors
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The story so far
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A large parameter space
“Who” “What” “When” “Where”

- 15 parameters to fully describe a generic black-hole binary

© Who and What: masses and spin vectors

© When: coalescence time
o Where: the sky location (right ascension, declination,

luminosity distance), but also the inclination of the
orbital plane, the coalescence phase and

polarisation angle of the signal

- If there are neutron stars in the pair, we have to add in
their tidal deformabilities

q=2.00 NRSur7dq2 + surfinBH7dqg2
xa=1[0.71,0.30,0.00]
xs=1[0.61, —0.17,0.23]
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https://arxiv.org/abs/1811.06552

Extracting the properties of the source

“Who” “What” “When” “Where”

* Detectors are being constantly improved:
more sensitive instruments yield more
detections

* Two ingredients:

O Accurate and fast models: we
"match” them to the signals

o0 Reliable and computationally
efficient parameter estimation codes
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Phenomenological waveform models

For peop'e N a hurry Credit: A. Taracchini, PhD thesis
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* Numerical Relativity (NR) simulations are chanll’
expensive! 910
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» Several iterations over the years. UIB team x ) ‘ .‘
delivered the latest version IMRPhenomX* \‘/

(Pratten+ arXiv:2001.11412, Garcia-Quirdos+ | | . .
arXiV:2001 1 091 4, Pratten+ arX|V200406503) Post-Newtonian Numerical Relativity Perturbation theory



https://arxiv.org/abs/2001.11412
https://arxiv.org/abs/2004.06503

Parameter estimation: some tools for gravitational-wave inference

* We estimate the properties of the source within a Bayesian framework and calculate their posterior
distributions

 Codes we used in our works (many more exist!)

o LALinference (Veitch+ arXiv:1409.7215), C code

O BILBY (serial, Ashton+ arXiv:1811.02042, Romero-Shaw+ arXiv:2006.00714, Ashton+
arXiv:2106.08730) & pBILBRY (parallelised nested sampling, Smith+ arXiv:1909.11873), python

» Stochastic samplers:
o Markov Chain Monte Carlo (MCMC) |
o Nested sampling (Skilling, Bayesian Anal. 1(4): 833-859, 2006)

Our experience

The use of HPC resources + pBILBY was a good combination to meet the
tight deadlines of collaboration projects


https://arxiv.org/abs/1811.02042v1
https://arxiv.org/abs/2106.08730

What drives cost up?

Increasingly complex waveform models are more computationally expensive.

Some signals have a higher number of observable cycles.
A single waveform might take from ms to s. We work within a Bayesian framework: we

typically needs millions of likelihood evaluations. The cost quickly escalates. Without
further optimisations, some models might take weeks/months to complete a single analysis!

Challenges
O Large parameter space
o (Correlation among some parameters

o Multimodalities



RES projects

* Activities we performed thanks to RES allocations
o Parameter estimation
o Numerical Relativity simulations

O |njection studies and waveform systematics



Parameter estimation
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Some of our contributions

* In O3, the Gravity group QUIB was in
charge of the final parameter estimation
runs for several events presented in the
latest catalog "GWTC-3"

 MareNostrum was acknowledged as one
of the key computational resources

The authors gratefully acknowledge the support of the
NSF, STFC, INFN and CNRS for provision of computa-
tional resources. Computing was performed on the OzS-
TAR Australian national facility at Swinburne Univer-
sity of Technology, which receives funding in part from
the Astronomy Natlonal Collaborative Research Infras-
tructure Strategy (NCRIS) allocation provided by the
" Australian ot' We thankfully acknowledge the |
| computer resources at MareNostrum and the technical
i support provided by Barcelona Supercomputing Center §
(RESAECT2M12001). |

 The CPU time of a single anaIyS|s ranged
from a few thousands to ~600K CPU hrs

LVK Collaboration, arXiv:2111.03606



Numerical Relativity simulations



Numerical Relativity simulations

Use open source framework Einstein Toolkit to evolve black hole binaries

¥ comPUte GW Signal. q18.__0.4_0_-0.69282_ 0_0_0
1
e Solve Einstein equations as coupled hyperbolic PDEs . o
(also elliptic constraints for initial data). ;(.‘ p
e 8th order FD, 4th order RK, 384 - 480 cores, mesh refinement to resolve 5
BHS. o

e Current focus: precession - situations where the orbital plane (almost) flips
over 2

e not well captured by models, effects on parameter bias not known.

e happens for high mass ratios - simulate Q=4, 6, 8, 18 |
(current upper limit of calibrating models to NR, UIB-Cardiff) &

¢ also relevant for BH-neutron star systems.

e | ong evolutions/many orbits are required to connect with perturbative B
regime. 10

e Challenging simulations

e 0.8 - 1.2 million hours for medium resolution, lower and higher resolution
required for convergence tests - continue through next funding period.



Injection studies



Injection and recovery: check how well a model does

* "|Injections” of known signals are a standard tool to check a model performance and
accuracy

* Jypically, we inject signals elaborated from trusted NR simulations
* We can study several aspects
o Dis/agreement among different waveform models

O |mpact of specific approximations (e.g. to the precession dynamics) on the
estimated source properties

O How noise properties impact our ability to determine the properties of the source



Scaling tests

e We tested the scaling of pBILBY on a simulated signal (chunk of 4 s) in PICASSO

o Lenovo SR645 nodes: 128 cores (AMD EPYC 7H12 @ 2.6GHz), 512 GB of RAM. InfiniBand HDR100 network
o Bull R282-Z90 nodes: 128 cores (AMD EPYC 7H12 @ 2.6GHz), 2 TB of RAM. InfiniBand HDR200 network

 We can check if wall-time gets reduced with no. cores according to our expectations

Sampling time (wall-time)
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https://www.scbi.uma.es/site/scbi/documentation#HARDWARE

A precessing black-hole binary

 We want to compare the "goodness” of different ways to describe precession effects.

 We take a NR simulation (SXS:BBH:0057, https://data.black-holes.org/waveforms) with
clear signs of precession and simulate a binary with a total mass of 150 M,

* We simulate a network of detectors and inject the waveform "as it is" (i.e. without adding

any extra noise). We analyse 4 s of data. Runs performed in Picasso.

Orange: numerically evolve
spin-precession equations
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Injection and recovery: planned follow-up

 Need to study the impact of
O Binary's orientation (whether we're seeing the binary face-on or edge-on)
O Total mass: if we have a heavy binary, we will detect only very few cycles!

O Noise: what if we add some fake noise to the data? In real life our signals
are buried in noise!



A neutron star binary

* We inject and recover a signal corresponding to a spinning (though non-precessing) binary neutron star and we
recover it with our tidal model, PhenomX+NRTidalv2 (Dietrich+ 1905.06011, Dudi+ arXiv:2108.10429)

* \We simulate a network of detectors and inject the waveform "as it is" (i.e. without adding any extra noise). We
analyse a long segment of simulated data: 128 s

 Runs in MareNostrum on 16 nodes (48 cores). In combination with pBILBY the sampling time is well below 2 days

RN Spin & combined
i . tidal deformability
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https://arxiv.org/abs/2108.10429

Conclusions

* Thanks to RES allocations, Spanish computational resources played an important role in
flagship papers produced by the LIGO-Virgo-KAGRA collaboration

* We plan to perform more injection studies to understand strengths and weaknesses of our
models in preparation for future observing runs

* We plan to run more NR simulations to calibrate our models
* We will extend our investigations to future detectors (e.g. Einstein Telescope)

* Big thanks to the technical support!
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