The Catalytic Reaction Mechanism of the β-Galactocerebrosidase Enzyme Deficient in Krabbe Disease

Alba Nin-Hill

16th RES USERS CONFERENCE | 15th September 2022

Energy storage

PYRANOSE CONFORMATIONS

7

GLYCOSIDE HYDROLASE (GHs)

GLYCOSIDE HYDROLASE (GHs)

β-galactocerebrosidase

CONFORMATIONAL CATALYTIC ITINERARIES

MC = Michaelis complex TS = transition state GEI = glycosyl-enzyme intermediate

β-GALACTOCEREBROSIDASE

Understanding the catalytic mechanism of GALC at atomic detail is important to boost the development of efficient conformational chaperones for this enzyme

UNUSUAL SUGAR CONFORMATION IN A MC STRUCTURE

First Michaelis complex (MC) structure of GALC in complex with an hydrolyzable substrate analogue, Gal-β-pNP.

The MC structure exhibits an **unusual** substrate conformation, ${}^{4}C_{1}$.

Is this a non-catalytic structure? Can this unusual conformation be functional?

2 CONFORMATIONS OF Gal- β -pNP IN THE ACTIVE SITE OF GALC

A. Nin-Hill, C. Rovira; ACS Catal. 2020, 10, 12091-12097

REACTIVITY OF THE GAL- β -pNP IN THE ¹S₃ CONFORMATION

REACTIVITY OF THE GAL- β -pNP IN THE ${}^{4}C_{1}$ CONFORMATION

ΔG[‡] = 15.4 kcal/mol (experimentally ≈ 15 kcal/mol) Hill et. al.; *Proc. Natl. Acad. Sci.* 2013, 110, 20479-20484

It is also a feasible reaction

$${}^{4}C_{1} \rightarrow [{}^{4}H_{3}]^{\ddagger} \rightarrow {}^{4}C_{1}$$
 itinerary

REACTIVITY OF GAL-β-pNP FROM 2 CONFORMATIONS

GH16 endo-glucanase

¹S₃ < ⁴C₁ (by 11 kcal/mol) Biarnés, et. al. *J. Biol. Chem.* 2006, 281, 1432-1441

The lack of steric determinants is probably the reason why the β -galactose moiety can switch between the distorted (${}^{1}S_{3}$) and undistorted (${}^{4}C_{1}$) conformers, both of which are catalytically relevant.

IN VIVO MODEL: CONSIDERING THE GalCer SUBSTRATE AND THE SAPOSIN LIPID TRANSFER PROTEIN

BUILDING THE GALC-SapA DIMER IN COMPLEX WITH GalCer

We tried several poses until the lipid fits optimally.

MD simulations were performed (~150 ns) to equilibrate the model.

GALC IN COMPLEX WITH β -GALACTOCEREBROSIDE

GalCer IN COMPLEX WITH GALC and GALC-SapA

GALC-only

FUTURE PROSPECTS

Obtai
GalCo

Obtain the conformational FEL of GalCer in complex with GALC-only and GALC-SapA dimer

·	4C ₁											
●°E	•°⊦	I _{1.} E ₁	• ² H ₁	• ² E	• ² H ₃	• E3	• ⁴ H ₃	● ⁴ E	.⁴H₅	•E₅	₀H₅	45°
3,0 E	3 <mark>,</mark> ³S	1 • ₿1,4	₁ <mark>•</mark> 5S ₁	^{2,5} ₿	²\$ ₀	● B _{3,0}	₀¹S₃	^{1,4} ₿	• ¹ S₅	•B _{2,5}	°S ₂	90° 6
•³E	●3⊢	I ₄ • E₄	•⁵H4	• ⁵ E	•⁵Ho	• E _o	•¹Ho	●1E	● ¹ H ₂	• E ₂	● ³ H2	135°
0° :	30°	60°	90° 1	.20° 1	L50° 1	۲0° 2 م	210° 2	40° 2	270° 3	300° 3	330° 31	 60° ↓

FUTURE PROSPECTS

Obtain the conformational FEL of GalCer in complex with GALC-only and GALC-SapA dimer

Calculate the reaction mechanism of GALC-SapA with the GalCer natural substrate.

CONCLUSIONS

Two itineraries, ${}^{1}S_{3} \rightarrow [{}^{4}H_{3}]^{\ddagger} \rightarrow {}^{4}C_{1}$ (classical) and ${}^{4}C_{1} \rightarrow [{}^{4}H_{3}]^{\ddagger} \rightarrow {}^{4}C_{1}$ (non-classical), contribute to the hydrolysis of the Gal- β -pNP substrate by GALC.

The SapA protein stabilizes the natural GalCer substrate with a high number of hydrophobic contacts.

In the future we would like to find out whether the SapA protein has a role in the catalytic reaction.

A. Nin-Hill, C. Rovira; ACS Catal. 2020, 10, 12091-12097

ACKNOWLEDGEMENTS

Special thanks

Carme Rovira Lluís Raich

THANK YOU VERY MUCH FOR YOUR ATTENTION!

Rovira Lab (July 2022)

Institut de Química Teòrica i Computacional UNIVERSITAT DE BARCELONA

Barcelona Supercomputing Center Centro Nacional de Supercomputación