Loading ...

Tuning Single-Molecule Conductance in Metalloporphyrin-Based Wires via Supramolecular Interactions

Research areaChemistry and Materials Science and Technology
TitleTuning Single-Molecule Conductance in Metalloporphyrin-Based Wires via Supramolecular Interactions
Publication TypeJournal Article
Publication year2020
AuthorsAragones, AC, Martin-Rodriguez, A, Aravena, D, Puigmarti-Luis, J, Amabilino, DB, Aliaga-Alcalde, N, Gonzalez-Campo, A, Ruiz, E, Díez-Pérez, I
JournalANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Type of ArticleArticle; Early Access
Keywordsdensity functional calculations, metalloporphyrins, single-molecule junctions, supramolecular electronics}, {biomolecular electronics
Abstract

Nature has developed supramolecular constructs to deliver outstanding charge-transport capabilities using metalloporphyrin-based supramolecular arrays. Herein we incorporate simple, naturally inspired supramolecular interactions via the axial complexation of metalloporphyrins into the formation of a single-molecule wire in a nanoscale gap. Small structural changes in the axial coordinating linkers result in dramatic changes in the transport properties of the metalloporphyrin-based wire. The increased flexibility of a pyridine-4-yl-methanethiol ligand due to an extra methyl group, as compared to a more rigid 4-pyridinethiol linker, allows the pyridine-4-yl-methanethiol ligand to adopt an unexpected highly conductive stacked structure between the two junction electrodes and the metalloporphyrin ring. DFT calculations reveal a molecular junction structure composed of a shifted stack of the two pyridinic linkers and the metalloporphyrin ring. In contrast, the more rigid 4-mercaptopyridine ligand presents a more classical lifted octahedral coordination of the metalloporphyrin metal center, leading to a longer electron pathway of lower conductance. This works opens to supramolecular electronics, a concept already exploited in natural organisms.

DOI10.1002/anie.202007237, Early Access Date = AUG 2020