Loading ...

Micelle-directed chiral seeded growth on anisotropic gold nanocrystals

Research areaChemistry and Materials Science and Technology
TitleMicelle-directed chiral seeded growth on anisotropic gold nanocrystals
Publication TypeJournal Article
Publication year2020
AuthorsGonzalez-Rubio, G., J. Mosquera, V. Kumar, A. Pedrazo-Tardajos, P. Llombart, D. M. Solis, I. Lobato, E. G. Noya, A. Guerrero-Martinez, J. M. Taboada, F. Obelleiro, L. G. MacDowell, S. Bals, and L. M. Liz-Marzan
JournalSCIENCE
Volume368
Number6498
Pages1472+
Type of ArticleArticle
Abstract

Surfactant-assisted seeded growth of metal nanoparticles (NPs) can be engineered to produce anisotropic gold nanocrystals with high chiroptical activity through the templating effect of chiral micelles formed in the presence of dissymmetric cosurfactants. Mixed micelles adsorb on gold nanorods, forming quasihelical patterns that direct seeded growth into NPs with pronounced morphological and optical handedness. Sharp chiral wrinkles lead to chiral plasmon modes with high dissymmetry factors (similar to 0.20). Through variation of the dimensions of chiral wrinkles, the chiroptical properties can be tuned within the visible and near-infrared electromagnetic spectrum. The micelle-directed mechanism allows extension to other systems, such as the seeded growth of chiral platinum shells on gold nanorods. This approach provides a reproducible, simple, and scalable method toward the fabrication of NPs with high chiral optical activity.

DOI10.1126/science.aba0980