

Barcelona Supercomputing Center – Centro Nacional de Supercomputación

Resolución Comité de Acceso,
Asignación de Horas de Supercomputación
para la

Red Española de Supercomputación (RES)

1er período 2012

Barcelona, Febrero 2012

1 Introducción

El Comité de Acceso del Barcelona Supercomputing Center – Centro Nacional de Supercomputación es un órgano asesor del Director que informará las solicitudes de acceso al Centro de los investigadores y grupos de investigación que lo soliciten. El Comité propondrá al Director, en base a la calidad científica y técnica de las propuestas recibidas una lista razonada y priorizada de las solicitudes. Corresponde al Director la decisión sobre los accesos autorizados.

El acceso es para las máquinas de la Red Española de Supercomputación (RES), e incluye MareNostrum. La asignación entre las diferentes máquinas se hace con motivos de necesidad de las actividades y de eficiencia.

El protocolo de acceso aprobado por la Comisión Ejecutiva del BSC está publicado en la página de web del BSC, http://www.bsc.es/RES

2 Análisis

En la presente convocatoria se ha realizado una asignación total de 29,7 millones de horas, incluyendo las horas de prioridad A y prioridad B. Estas horas incluyen las máquinas instaladas en Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS), Universidad Politécnica de Madrid (UPM), Instituto Astrofísico de Canarias (IAC), Universidad de Cantabria (UC), Universidad de Málaga (UMA), Universidad de Valencia (UV), Universidad de Zaragoza (UZ) e Instituto Tecnológico de Canarias (ITC).

Todas las actividades han sido evaluadas por los paneles de expertos, clasificando las solicitudes según si eran excelentes, muy buenas y buenas. Adicionalmente, se han tomado en consideración los criterios de evaluación descritos en la Sección Comentarios sobre la evaluación.

Con las actividades excelentes de mayor prioridad, se cubre el uso teórico de MareNostrum y del resto de máquinas de la RES para el próximo período de 4 meses. Algunas actividades calificadas como excelentes no han podido recibir recursos por la gran cantidad de demanda recibida, y sólo han podido recibir horas sin prioridad.

A la mayoría de actividades que han obtenido recursos, se han asignado horas de uso de las máquinas de la RES con utilización preferente. El resto de actividades que han obtenido recursos, es con utilización no preferente (es decir, utilizando las horas cuando estas no sean usadas por las actividades preferentes).

En este periodo ha entrado en producción MinoTauro, un supercomputador con 185,78 Tflops de rendimiento pico, con 128 nodos conectados por una red IB, y cada nodo compuesto por 2 procesadores Intel (6 cores cada uno), 2 tarjetas GPU NVIDIA M2090, 24 GB de memoria, y disco local SSD de 250 GB. De entre todas las actividades presentadas, el comité de acceso ha seleccionado un conjunto de actividades para acceder a este sistema que utilizan programas ya portados a esta arquitectura. Estas actividades tendrán acceso compartido ente MareNostrum y MinoTauro. Se recomienda que en el siguiente periodo, los usuarios soliciten acceso a este sistema de forma explicita y para ello puedan realizar pruebas en el sistema durante el periodo actual para poder preparar sus programas.

Las actividades que no reciben horas de utilización al sistema no podrán disponer de acceso al mismo. Todas estas actividades recibirán un e-mail indicando que no ha sido posible concederles acceso a las máquinas en esta oportunidad. Se anima a todos los solicitantes a presentar solicitud de acceso para la siguiente convocatoria, que iniciará la evaluación el próximo mes de Mayo de 2012.

Para mejorar como se comparten los recursos asignados entre las diferentes actividades, y evitar así las concentraciones de uso de MareNostrum y el resto de máquinas en determinados periodos de tiempos, se requiere la utilización proporcional de los recursos asignados. Así, si una actividad no utiliza la parte proporcional asignada en un periodo determinado, quedará reducida la asignación total de forma proporcional. Por ejemplo, si de una asignación de 300 mil horas en tres meses, no utiliza cerca de 100 mil horas el primer mes, su asignación para el periodo completo será reducida a 200 mil. De la misma forma, se reducirá la prioridad de acceso a las actividades que sobrepasen su asignación proporcional en cada periodo de tiempo. Por ejemplo, si de una asignación de 300 mil horas en cuatro meses, se utiliza cerca de 200 mil horas el primer mes, se ira reduciendo la prioridad de los diferentes trabajos en el sistema para que la prioridad regularice el consumo.

Así mismo, las horas no consumidas en el período no se pueden acumular para próximas convocatorias.

La utilización se medirá según "ellapsed time", considerando la utilización por el número de procesadores asignados. Por ejemplo, si se solicita el uso en exclusiva de un nodo (que tiene cuatro o dos procesadores, dependiendo de la máquina) durante 1 hora, se considerará el uso de 4 ó 2 horas.

3 Comentarios sobre la evaluación

El Comité de Acceso del BSC-CNS ha seguido los siguientes criterios para la evaluación de las actividades:

- 1. Reglas generales
 - a. La relevancia del proyecto científico en que se enmarca la actividad propuesta (20 %)

- b. La justificación de la actividad propuesta y de los cálculos a realizar en la RES para la consecución del proyecto científico global (30 %)
- c. La calidad científica del grupo solicitante (10%)
- d. La experiencia y capacitación en el cálculo de alto rendimiento (10 %)
- e. La necesidad real de supercomputación para realizar el cálculo (20 %)
- f. La adecuación técnica del proyecto a la arquitectura de los recursos de la RES (10 %)
- 2. Evaluación de los resultados presentados por las actividades de continuación
 - a. Publicaciones presentadas como resultado del acceso de actividades anteriores
 - b. Resultados técnicos obtenidos en los periodos anteriores
- 3. Utilización adecuada y completa de los recursos asignados en los periodos anteriores
- 4. Participación de grupos españoles en las actividades solicitadas
- 5. Actividad específica dentro de un proyecto de investigación. El acceso a los recursos de la RES corresponde a actividades específicas dentro de un proyecto de investigación, y no corresponden a agrupaciones de diferentes actividades de investigadores de comunidades virtuales.
- 6. Seguir adecuadamente las obligaciones adquiridas en la utilización de MareNostrum y los otros recursos de la RES.
 - a. Envío a la RES de copia electrónica de las publicaciones científicas en las cuales el uso de los recursos de la RES ha resultado determinante.
 - b. Mencionar explícitamente en las publicaciones científicas la ayuda del RES en su proyecto.
 - c. Cumplimiento de las normas de utilización de los recursos de la RES y de las políticas de seguridad y confidencialidad determinados por la RES.

- d. No hacer negocio con los resultados obtenidos en los recursos de la RES bajo el formato "Investigación Pública".
- e. Proporcionar anualmente información y documentación, como videos, presentaciones, y cualquier otro material, para ser utilizado como material divulgativo de la RES.

4 Consideraciones adicionales

4.1 Actividades industriales

Cualquier actividad industrial está sujeta a las mismas condiciones de calidad que las actividades de investigación pública. Todos los usuarios con actividades industriales, y con acceso a las máquinas de la RES deben pagar por el acceso a los recursos. El precio se calcula para cada una de las actividades que lo indiguen, teniendo en cuenta los recursos solicitados (humanos y técnicos) y el interés científico/económico de la actividad.

4.2 Política de uso de disco

En la actual resolución, se ha realizado asignación no sólo de tiempo de CPU, sino de espacio de almacenamiento. Se ha tenido en cuenta el espacio solicitado, así como el espacio disponible y la eficiencia en la utilización de los recursos.

Para cada actividad, se ha asignado capacidad en tres espacios diferentes:

- Projects: para tener almacenados los resultados de las simulaciones que se necesitan durante todo el periodo de asignación
- Scratch: espacio necesario para realizar las simulaciones en cada momento. Se debe considerar que este es un espacio de disco que se debe liberar
 7 días después de haber finalizado la simulación que lo ha producido
- HSM: espacio de disco/cinta que permite almacenar todos los resultados obtenidos. En los centros que no dispongan de este equipo, se podría permitir ampliar el plazo de 7 días en Scratch. Se estudiará para cada caso en particular.

Resolución Comite de Acceso, 1er periodo 2012

4.3 Paralelismo compulsivo

Para mejorar la eficiencia de los sistemas, es necesario que todas las actividades que han planteado simulación que requieren paralelismo compulsivo (muchas ejecuciones del mismo programa, con variación de los datos de entrada), utilicen la herramienta GRID superscalar (http://www.bsc.es/grid/gridsuperscalar). El envío de trabajos secuenciales al sistema se limitará.

El equipo de soporte del BSC-CNS y equipo del Nodo Computacional del INB en el BSC, ofrecerán la ayuda necesaria para portar los códigos a esta tecnología. Se debe contactar con support@bsc.es

4.4 Actualizaciones de infraestructuras de CPD

Algunas de las instalaciones de los superordenadores de la RES se actualizarán dentro de este periodo de cuatro meses. Los equipos de soporte avisarán de forma adecuada de estas paradas. En el momento de realizar las asignaciones se han tenido en cuenta estos periodos sin servicio, de forma que no debe afectar a la posibilidad de utilizar todos los recursos concedidos.

Resolución Comite de Acceso, 1er periodo 2012

5 Listados y asignaciones

A continuación se incluye la lista de las actividades que tendrán acceso a los diferentes nodos de la RES, con las asignaciones en miles de horas, y las capacidades en Gigabytes de los diferentes sistemas de ficheros. Las asignaciones a BSC que se marquen con BSC* son las correspondientes a doble acceso, MareNostrum y MinoTauro, y el equipo de soporte de BSC contactará adecuadamente con los investigadores para los métodos de acceso. Las actividades asignadas a UPM/CeSViMa se indican en miles de horas correspondientes a dicha máquina basada en Power7, que ofrece mayor rendimiento que PPC (se ha considerado un rendimiento a la baja de 2x, de forma que el número de horas asignadas se corresponde en la mayoría de los casos a la mitad de las horas solicitadas).

Líder	Título	Con prioridad	Sin prioridad	Projects	Scratch	нѕм	Site
Agustí Lledós	Modeling dynamic materials: the case of a solvent-responsive coordination cage	750		200	1000	1000	BSC
Agustín Sánchez-Arcilla	Coupling WRF to a wave model through a joint sea surface roughness description	175		200	150	0	UPM
Albert Cirera Hernández	FP7-NMP-245977: Equilibrium and Transport Properties of Silicon Quantum Dots for Tandem Solar Cells		50	40	40	0	UV
Andrey V. Malyshev	Metal-insulator transition in graphene	300		200	200	1000	BSC
Angel Rubio	Optical response, excitons and electronic correlations in TiO2 nanomaterials: novel insights from a fully ab-initio many-body perturbation theory approach	900		800	600	1000	BSC
Angel Rubio	Towards a novel oxide electronics": ab initio many body calculation of the electronic properties of interfaces between transition metal oxides"	225		700	500	0	UPM
Anna Sikora	Scalable and Dynamic Performance Tuning for Large-Scale Parallel Applications	32		50	20	1000	BSC

Líder	Título	Con prioridad	Sin prioridad	Projects	Scratch	HSM	Site
Antoni Planas	Amphipathic helices discovery on Mycoplasma genitalium glycosyltransferase structure by means of explicit membrane molecular dynamics simulations.	200		700	700	0	UV
Antonio Sánchez Torralba	Selective inactivation of one catalytic site in the the double-strand DNA cleaver homing endonuclease I-Dmol		50	600	300	1000	BSC
Assensi Oliva	Towards the understanding of shear-layer instability mechanisms for drag reduction by means of advanced turbulence modeling	850		300	1500	2048	BSC
Assensi Oliva	Turbulent natural convection in enclosed cavities. On the role of transitional thermal boundary layers in the flow structure	950		250	1400	2048	BSC
Avelino Corma Canós	Gold-catalyzed C-C bond forming reactions: identification of active sites for phenylacetylene homocoupling in homogeneous and heterogeneous gold catalysts	690		150	200	1000	BSC
Carles Serrat	Scaled Attosecond Physics	400	300	2000	2000	5000	BSC
Carme Rovira	Mechanistic insight into N-glycan processing by ab initio metadynamics	450		1800	1700	3000	BSC*
Carme Rovira	Ab initio metadynamics simulations of the binding of peptides to gold nanoparticles	300		1500	1700	3000	BSC*
Daniel Crespo	Dynamic structure factor of Bulk Metallic Glasses determined by Molecular Dynamics simulation	600		500	500	1000	BSC
Daniel Stich	Time reversal imaging of continuous seismic sources	18		300	300	0	UMA

Líder	Título	Con prioridad	Sin prioridad	Projects	Scratch	HSM	Site
Eliseo Ruiz	Magnetism and Transport Properties of Magnetic Molecules on Surfaces and Nanostructured Systems	475		60	20	1000	BSC
Elvira Guardia	Ab initio molecular dynamics study of aqueous non polar species close to a graphene sheet	600		150	50	0	IAC
Enrique Martinez Gonzalez	Constraints on inflationary models of the universe based on CMB data	135		350	500	0	UC
Federico Gago	SIMULATION OF THE ENZYME REACTION MECHANISM IN HELICOBACTER PYLORI TYPE II 3-DIHYDROQUINASE TRIMER USING QM/MD HYBRID METHODS	300		450	500	1000	BSC*
Fernando Martin	XUV/X-ray laser pulses for ultrafast electronic control in molecules	1000		300	1000	1000	BSC
Florian Müller-Plathe	Investigation of the non-Einstein decrease of viscosity in nanocomposite materials		70,4	20	500	1000	BSC
Francesc Illas	Design of new catalysts for methanol synthesis: performance of Au/TiC	394		300	1250	1000	BSC
Francisco J. Doblas-Reyes	Sea ice initial conditions for seasonal to decadal predictions	600		300	3500	6000	BSC
Francisco José Olmo Reyes	Light scattering properties of nonspherical particles for radiative transfer applications: the ALFA database (extension 2)	360		50	50	0	IAC
Gregori Ujaque	Ru-catalyzed hydrogen transfer reactions in water	190		100	1000	0	UZ
Gustavo Yepes	The Marenostrum Numerical Cosmology Project: Grand Challenge simulations of structure formation in the Universe	1200		5000	5000	85000	BSC

Líder	Título	Con prioridad	Sin prioridad	Projects	Scratch	HSM	Site
Ignacio Pagonabarraga	Self organization and structure formation in biomimetic active suspensions	650		900	900	2000	BSC
Irene Arias	Phase-field modeling of fracture in ferroelectric ceramics	645,7		300	100	1200	BSC
J. J. Barbero	QM/MM metadynamics Studies on the beta- Galactosidase Catalytic Mechanism	150		1200	1500	3000	BSC*
J. Javier Honrubia Checa	Fast ignition of inertial fusion targets	1500		250	400	1000	BSC
Javier Fdez Sanz	Electronic Properties of CdSe Quantum Dots Used as Light Captors in Sensitized Solar Cells	275		700	750	0	UPM
Jesus Mari Ugalde Uribe- txeberria	PNOF theory: Towards biological applications	150	150	50	50	1000	BSC
Johannes Jaeger	Reverse-engineering embryo segmentation patterning in flies: exploring different scenarios	525		500	20	0	UC
Johannes Jaeger	Reverse-engineering mutant gene regulatory networks in Drosophila	350		250	10	0	UMA
Jordi José	The impact of the white dwarf composition and mass on multidimensional models of mixing in classical novae	480		2200	2200	4000	BSC
Jordi Torra i Roca	Gaia: Simulation of Telemetry Stream	1000		250	3000	16000	BSC
Juan Jose Novoa Vide	CPMD study of the crystal thermal effects on the NCBDTA magnetic crystal: Vibrational thermal effect or phase transition?	292		20	50	1000	BSC

Líder	Título	Con prioridad	Sin prioridad	Projects	Scratch	нѕм	Site
Juan Manuel Vanegas	Role of hopanoids in the mechanical properties of model bacterial membranes and function of mechanosensitive channels	500	444	500	100	1000	BSC
Kendall N. Houk	De novo design of enzymes	201,6		500	100	1000	BSC*
Konstantin Neyman	Computer Modeling to Gain an Atomistic Insight into the Energy Storage Processes Mediated by Ceria	400		200	200	0	UZ
Luis Rodriguez	Ab Initio Molecular Dynamics Study of	100	100	200	1000	0	UC
Manel Perucho Pla	Relativistic Outflows: Dynamics, mass-load and high-energy emission.	200		1500	1500	1000	BSC
Manuel Alcami	Properties of epitaxial graphene on Ru(0001)	250		200	200	0	UPM
Marcel Swart	Study of reactivity and regioselectivity of La@C2v(9)-C82	281,6		50	100	0	UV
Maria Veronica Ganduglia- Pirovano	Modelling Ni/ceria systems as potential water-gas shift catalysts for hydrogen production	600		300	200	1000	BSC
Mercedes Boronat	Graphene supported gold catalysts for propene epoxidation with molecular O2	250		150	300	0	UPM
Natalia Calvo Fernández	IMPACT OF SOLAR FORCING ON FUTURE CLIMATE CHANGE USING A CHEMISTRY CLIMATE MODEL – CONTINUATION -	369		800	1000	6000	BSC
Natalia Skorodumova	First-principle study of the steel cutting process		300	20	50	1000	BSC
Nuria Lopez	Growth of Gold Nanoparticles and Nanorods and Wires: DFT Study 2nd period		100	400	300	1000	BSC

Líder	Título	Con prioridad	Sin prioridad	Projects	Scratch	HSM	Site
Pablo Ordejón	Quantitative prediction of Charge Density Wave instabilities in low dimensionality crystals	210		500	200	1000	BSC
Pablo Palacios Clemente	Theoretical Characterization of the optimized geometry and energy levels in an hybrid nanostructure.	80	28	300	600	0	UPM
Pablo Palacios Clemente	Tuning of inversion degree and band gap control in MgIn2S4 and CdIn2S4 thio-spinels	67,5	67,5	300	500	0	UPM
Patricia Tissera	Chemical Evolution of the Universe	400	500	500	800	1000	BSC
Pau Pastor	Identification of genes involved in Parkinson's disease and essential tremor phenotypical spectrum	15		500	500	0	UPM
Perla Wahnón	Design and Characterization of Advanced Photovoltaic Materials with High Efficiency		100	300	500	0	UPM
Pilar Hernandez Gamazo	Flavour Physics from Mixed-action Lattice QCD	50		1000	2000	20000	BSC
Ramiro Logares-Haurie	Diversity, distributions, functionality and interactions in aquatic microbes investigated with traditional and next-generation sequencing technologies	360		500	100	1000	BSC
Riccardo Rossi	Extending parallel capabilities of the general purpose Kratos Sovler	50		100	200	0	UPM
Roderic Guigó	Use of TBLASTX to find regions of homology among multiple large-size full genomes		20	50	15	0	UZ
Ronen Zangi	DNA-Protein Interactions: How to Distinguish Methyl-Cytosine from Cytosine?	261		100	100	0	UV
Ronen Zangi	Why DNA Is Deoxyribose Whereas RNA Ribose?		60	100	100	0	UV

Líder	Título	Con prioridad	Sin prioridad	Projects	Scratch	HSM	Site
Ruben Perez	First-principles scanning probe calculations for the characterization of intermolecular interactions and the charge distribution at the atomic scale.	400		1500	1000	0	UPM
Santiago Badia	Hybrid substructuring domain decomposition methods for computational fusion	500		100	250	1500	BSC
Sascha Husa	Methods for evolving black hole binaries	330		1000	1500	5000	BSC
Sergio Madurga	Study of the stability of functionalized gold nanoparticles by molecular dynamics simulations	140		150	300	0	ITC
Stefan Bromley	Structure and reactivity of silicate nanoparticles		20	200	500	0	UC
Ulrich Sperhake	Black-holes in non-assymptotically flat spacetimes	300		100	500	0	UZ
Xavier Barril	Kinetics vs Thermodynamics: Comparison of Steered Molecular Dynamics (SMD) and alchemical transformations for Lead Optimization	350		300	20	1000	BSC*
Xavier Salvatella	Correlated motions in proteins	500		100	100	0	UMA
Yang Wang	Structures, energetics, and phase transitions of self- assembled monolayers of alkylthiolates on various metal surfaces	80		100	200	0	UMA

6 Siguientes pasos

Se dispone de un entorno web para poder acceder durante el periodo a toda la información relacionada con la actividad.

Esta disponible a través de la web: http://www.bsc.es/RES. Es una zona protegida, que puede accederse con el correo electrónico del líder de la actividad, o de la persona que presentó la solicitud.

Desde esta zona, que esta en construcción y evolución, se puede:

- Dar de alta a los usuarios/investigadores que participan en esta actividad. Se hace de forma automática, pero es imprescindible firmar el documento y devolverlo por correo antes de 15 días de dar el alta. De otra forma se anulará el acceso al sistema hasta que se reciba la documentación. Esto debe realizarse tanto para los usuarios de actividades de continuación como para actividades nuevas.
- Consultar la información proporcionada por el comité de acceso.
- Consultar los recursos asignados para la actividad. Es importante comprobar que no hay errores en estos datos, ya que serán los que se apliquen en los diferentes sites.
- Analizar el consumo semanal de recursos

Una vez rellenada la información, el equipo de soporte local del site de asignación se pondrá en contacto con los usuarios para proporcionar la información necesaria.